POPs IN FOOD-POSTER

APPLICATION OF THE CALUX[™] ASSAY TO THE ANALYSIS OF DXNs IN FISH (THE FIRST REPORT)

Junko Fujino¹, Tomoaki Tsutsumi², Yoshiaki Amakura²Masafumi Nakamura¹, Hiroko Kitagawa¹, Tsukasa Yamamoto¹, Kumiko Sasaki², Masatake Toyoda²

²National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan ¹Hiyoshi Corporation, 908 Kitanoshocho, Omihachiman, Shiga, 523-8555, Japan

Introduction

Food has been generally recognized as the main source of human intake of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and dioxin-like coplanar polychlorinated biphenyls (Co-PCBs); more than 90% of the total daily intake of these contaminants generally derives from food¹. Recently, a total diet study in Japan revealed that about 60% of the dietary intake of these compounds, collectively know as dioxins (DXNs), is likely to come from the intake of fish and shellfish². Therefore, monitoring the levels of DXNs in fish and shellfish would provide important information for risk assessment. Traditionally, DXNs in food and environmental samples have been analyzed by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/MS). However, HRGC/MS requires the use of expensive equipment and the sample preparation procedures are often time consuming and costly. Thus, the use of HRGC/MS is not entirely suited to the task of rapid and frequent monitoring of large numbers of samples.

One possible alternative to HRGC/MS is a bioassay for DXNs such as the CALUXTM assay. We have previously applied the CALUXTM assay to dioxin analysis in Japanese fat samples with success³. In this study, we describe the application of the CALUXTM assay for the monitoring of DXNs in fish samples

Materials and Methods

Fish samples

Nineteen fish samples (3 yellow tail, 3 mackerel, 2 cod, 4 tuna, 2 salmon. 2 bonito, 2 sea bass and a flatfish) purchased at the market in Japan were analyzed by the CALUXTM assay. A commercially available certified reference sample of carp was also analyzed (Wellington Laboratories, Guelph, Canada).

Sample extraction and clean-up procedures

The treatment of samples for the CALUXTM assay was conducted in original way described as follows.

- 1. Grind sample and aliquot 10 grams of sample.
- 2. Add 15 milliliters of acetone to sample aliquot.
- 3. Add 10 milliliters of dichloromethane/hexane (1:2) and mix.
- 4. Centrifuge the mixture at 500 rpm for five minutes to separate the phases.
- 5. Apply the dichloromethane/hexane layer to the extraction column.
- 6. Repeat step 3 through 5 two times.
- 7. Wash the column with 10 milliliters of dichloromethane/hexane (1:2).
- 8. Following concentration, the sample extract was cleaned up and separated into a fraction containing PCDDs/PCDFs and a fraction containing Co-PCBs.

ORGANOHALOGEN COMPOUNDS Vol. 51 (2001)

348

POPs IN FOOD-POSTER

CALUXTM Assay

The CALUXTM assay uses a patented recombinant mouse cell line that contains the luciferase reporter gene under control of dioxin responsive elements⁴. When these cells are exposed to environmental ligands such as DXNs, luciferase protein is synthesized. The amount of light produced by the luciferase protein is directly related to DXNs-TEQ. The CALUXTM assay method used has been described previously⁵. Briefly, the cells were grown in the 96-well view plates and exposed to fish sample extracts and 2,3,7,8-TCDD standards (250, 125, 62.5, 31.2, 15.6, 7.8, 3.9, 1.9, 0.9, 0.5 ppt), using DMSO as the vehicle (final DMSO concentration 1% in cell culture medium). The plates were incubated at 37° C and 5% CO₂ for 20 hours to produce optimal expression of luciferase activity. Following incubation, the medium was removed and the cells were lysed. Luciferase activity was determined using a luminometer (Lucy 1 produced by Anthos Corp.). Luciferase activity was reported as relative light units (RLU).

Concentration of 2,3,7,8-TCDD

HRGC/MS analysis

The extraction and cleanup of samples for HRGC/MS followed previously published protocols ⁶. The analysis of the 17 active PCDDs/Fs and 12 Co-PCBs (non-ortho and mono-ortho PCBs) were performed by HRGC/MS using a HP6890 plus gas chromatograph coupled to a JMS-700 mass spectrometer (JEOL Ltd., Japan). The TEQ concentrations were calculated using the WHO-TEFs (1997).

ORGANOHALOGEN COMPOUNDS Vol. 51 (2001)

Results and Discussion

Table 1 shows the data of the concentration of DXNs in fish analyzed by the CALUXTM assay. The averages of TEQ of salmon, tuna, bonito, candlefish, flatfish, mackerel, sea bass and yellowtail were 1.948, 1.368, 0.496, 1.432, 0.759, 1.110, 1.292 and 3.697 pg-TEO/g wet weight (wg) respectively. We previously reported the data of the concentration of DXNs in Japanese fishes. From that study the averages of TEQ of flatfishes, mackerels and sea basses were 0.404, 0.992 and 10.397 pg-TEQ/wg respectively⁵. These data indicate that TEQ levels of flatfishes or mackerels analyzed by the CALUXTM assay are approximately equal to the data by HRGC/MS.

Furthermore the samples of commercially available carp whose DXNs concentration was certified were analyzed by the CALUXTM assay and these results were compared with the data analyzed by HRGC/MS (Table 1). PCDDs/Fs-TEQ analyzed by the CALUX[™] assay and by HRGC/MS were 23.300 and 19.681 pg-TEQ/wg respectively. Co-PCBs-TEQ analyzed by the CALUXTM assay and by HRGC/MS were 9.345 and 69.404 pg-TEQ/wg respectively. TEQ analyzed by the CALUXTM assay and analyzed by HRGC/MS was 32.645 pg-TEQ/wg and 89.085 pg-TEQ/wg respectively. The CALUXTM assay results and HRGC/MS data were very similar but there are small differences that might be dependent on the characteristic of low sensitivity to Co-PCBs of the CALUXTM assay.

Sample			pg TEQ/g on wet weight basis			
		PCDD/Fs	Dioxin-like PCBs	PCDD/Fs+dioxin-like PCBs		
Salmon	No.1	0.756	0.311	1.067		
	No.2	2.056	0.773	2.829		
	Mean	1,406	0.542	1.948		
Tuna	No.1	ND	ND	ND		
	No.2	2,375	0.385	2.760		
	No.3	2,000	0.710	2.700		
	No.4	ND	ND	ND		
	Mean	1.094	0.274	1.368		
Bonito	No.1	0.435	0.120	0.555		
	No.2	0.240	0.197	0.437		
	Mean	0.338	0.159	0.496		
Cod	No.1	0.968	0.579	1.547		
	No.2	0.693	0.623	. 1.316		
	Mean	0.831	0.601	1.432		
Flat fish	No.1	0.524	0.235	0.759		
Mackerel	No.1	1.638	0.754	2.392		
	No.2	0.498	ND	0.498		
	No.3	0.340	0.100	0.440		
	Mean	0.825	0.285	1.110		
Sea bass	No.1	1.505	0.553	2.058		
	No.2	0.526	ND	0.526		
	Mean	1.016	0.277	1.292		
Yellowtail	No.1	2.511	1.038	3.549		
	No.2	3.501	1.646	5.147		
	No.3	1.666	0.729	2,395		
	Mean	2,559	1.138	3.697		
Сагр	No.1	23.300 (19.681)	9.345 (69.404)	32.645 (89.085)		

Table 1. Concentration of PCDDs/Fs and Co-PCBs i	n fi	ish
--	------	-----

The values in parentheses were determined by HRGC/HRMS.

Conclusions

Considering Japanese lifestyle of eating, it should be necessary for its safety to screen more ORGANOHALOGEN COMPOUNDS 350 Vol. 51 (2001)

POPs IN FOOD-POSTER

kinds of fishes and to monitor the DXNs in fish more frequently and continuously. But now in Japan few extensive surveys of the concentrations of DXNs in foods such as fishes were conducted. In this study we applied CALUXTM assay to the analysis of DXNs in fishes. This result confirmed its similarity to HRGC/MS, thereby from the standpoint of its rapidity and costs CALUXTM assay will be useful for monitoring and screening. Belgium government's Scientific Institute of Public Health has already reported DXNs in foods such as a chicken fat sample, porcine fat samples and samples of eggs analyzed by the CALUXTM assay⁶. That report also showed the usefulness of the CALUXTM assay as an alternative method for HRGC/MS to determine TEQ levels in foods. More data of the concentration of DXNs in fish are required to verify the correlation of CALUXTM assay with HRGC/MS method.

References

- 1. Dioxins (1999), Ministries and Agencies that are members of the Ministerial Council on Dioxin Policy Japan.
- 2. Denison, M., Brouwer, A. and Clark, G. (1998). U.S.patent # 5,854,010.
- 3. Kayama F, Hamamatsu A, Sagisaka K, Brown D, Clark G, Suzuki T (2000), The 3rd Annual Meeting of Japan Society of Endocrine Disrupters Research.
- 4. Brown, D., Kishimoto, Y., Ikeno, O., Chu, M., Nomura, J., Murakami, T., and Murata, H. (2000) Organohalogen Compounds 45: 200-203.
- 5. Masatake Toyoda, Takako Iida, Tsuguhide Hori, Toshihiko Yanagi, Youichi Kono and Hiroyasu Uchibe : Journal of the Food Hygienic Society of Japan, (1999) 40, 111~121.
- 6. Ilse Van Overmeire, Leo Goeyens, Hedwig Beernaert, Sarah Srebrnik, Geert De Poorter, Willy Baeyens, George Clark, Michael Chu, Andrew Chu, David Chu, Richard Morris and David Brown, (2000) Organohalogen Compounds 45: 196-199.