CONGENER-SPECIFIC ANALYSIS AND TOXICOLOGICAL EVALUATION OF PCDDS, PCDFS AND CO-PCBS IN YUSHO RICE OIL

Yuan Yao ${ }^{1,2}$, Takumi Takasuga ${ }^{3}$, Shigeki Masunaga ${ }^{1.2}$ and Junko Nakanishi ${ }^{1,2}$
${ }^{1}$ Institute of Environmental Science and Technology, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
${ }^{2}$ CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
${ }^{3}$ Shimadzu Techno-Research Inc., 2-4 Nishinokyo, Sanjo, Bocho, Nakagyo, Kyoto 604-8435, Japan

Introduction

In 1968, the Yusho poisoning incident occurred in Western Japan and involved more than 1,800 people. Although it was found that Yusho rice oil ingested by the victims was contaminated with polychlorinated biphenyls (PCBs), subsequent investigations revealed the presence of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs) in the causal rice oil ${ }^{1-3}$. The objective of this study is to investigate the levels of PCDD/Fs and PCBs including dioxin-like coplanar PCBs (Co-PCBs) in Yusho rice oil using the newest analytical techniques and to further evaluate their relative toxicological contribution.

Methods and Materials

One bottle of Yusho rice oil was obtained from a Yusho family in Fukuoka City in 1998. Since the obtained causal oil had spontaneously divided into two layers, namely, the liquid layer (701 g) and the sediment layer (15 g), we analyzed them separately and performed weighted average for concentration calculation. The concentrations of PCDD/Fs and PCBs in the causal oil were analyzed by Yokohama National University and Shimadzu Techno-Research Inc. with two different approaches shown below for cross-checking. The toxic equivalent (TEQ) levels were calculated based on the toxic equivalency factors (TEFs) for humans revised by the World Health Organization (WHO) in 1998.
Approach 1: The Yusho rice oil sample (0.20 g) of each layer was initially dissolved in n-hexane $(10 \mathrm{~mL})$. After the addition of ${ }^{13} \mathrm{C}$-labeled internal standards, an aliquot $(0.50 \mathrm{~mL})$ of the n-hexane solution was treated with alkaline hydrolysis and concentrated sulfuric acid. Sample cleanup included chromatography on silica gel, aluminum and carbon columns. The final PCDD/F and Co-PCB fractions were further concentrated to $25 \mu \mathrm{~L}$ and spiked with ${ }^{13} \mathrm{C}_{12}$-labeled recovery standards for high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) analysis. The tetra- to octachlorinated PCDD/Fs and four non-ortho substituted Co-PCBs (PCB-77, PCB-81, PCB-126 and PCB-169) were analyzed by congener-specific analysis. The rice oil was analyzed twice (A and B) by this approach in the present study.
Approach 2: The oil sample of each layer was initially dissolved in n-hexane containing 10% toluene. For the analysis of PCDD/Fs, an aliquot containing 1 g of the causal oil was extracted with n-hexane-saturated dimethyl sulfoxide (DMSO) after the addition of ${ }^{13} \mathrm{C}_{12}$-labeled internal standards. The DMSO phase was back-extracted with n-hexane and n-hexane-extracted water. The concentrated n-hexane phase was further cleaned up using multi-layer silica and carbon
column chromatography. In the case of PCB analysis, an aliquot containing 1 g of the causal oil was directly treated using multi-layer silica and carbon columns after the addition of ${ }^{13} \mathrm{C}_{6}$ - and ${ }^{13} \mathrm{C}_{12}$-labeled internal standards. The obtained PCDD/F and PCB fractions were concentrated and congener-specifically analyzed by HRGC/HRMS.

Results and Discussion

Nearly all the tetra- to octachlorinated PCDD/Fs and all the Co-PCBs were detected from the rice oil sample. The results are presented in Tables 1 and 2. The individual concentrations of all the 2,3,7,8-substituted PCDD/F and Co-PCB congeners in Yusho rice oil were elucidated for the first time. Good reproducibility was obtained using approach 1 . Furthermore, the results obtained from the two approaches agreed well, indicating the reliability of the data obtained in this study.
The concentrations of PCDDs and PCDFs were found to be 0.59 and 8.8 ppm , respectively. These results are comparable to those of Tanabe et al. ${ }^{3}$, who congener-specifically investigated two Yusho oil samples and reported that the oil contained 0.83 (0.81 and 0.84) ppm of PCDDs and 12 (9.2 and 14) ppm of PCDFs^{3}. For PCBs, more than 130 PCB peaks were observed and a total concentration of 850 ppm including 140 ppm of Co-PCBs was obtained in the present study. The mean concentration of PCBs in Yusho oil reported by Nagayama et al. ${ }^{1}$ and Mimura et al. ${ }^{4}$ was 920 (830-1030) and 830 (769 and 899) ppm, respectively. Additionally, Mimura et al. indicated that $130-140$ PCB congeners were present in Yusho rice oil ${ }^{4}$. On the other hand, Miyata et al. found relatively low levels of these compounds in Yusho causal oils ${ }^{2}$. The concentrations of PCDDs, PCDFs and PCBs were reported to be 0.14 (0.13 and 0.14), 1.5 (1.3 and 1.6) and 160 (150 and 160) ppm, respectively ${ }^{2}$. In addition, only 74 PCB components were detected from Yusho oil by Tanabe et al. and the mean PCB concentration was 380 (330 and 420) ppm^{3}. The differences in dioxin and PCB concentrations between the Yusho oils mentioned above might be attributed to the difference in production date ${ }^{5}$. Based on the comparison of the observed PCDF and PCB levels and their ratio (PCDFs/PCBs) with those of various Yusho oils produced on different dates ${ }^{5}$, the rice oil analyzed in this study is believed to be produced during the initial period of the rice oil contamination.
The TEQs of PCDDs, PCDFs, and Co-PCBs were calculated to be 17,470 and 120 ppb , respectively. Thus, the relative contribution of these classes to the total TEQ in Yusho oil is 3,77, 20%, respectively, indicating that PCDFs played a major role in the toxicity of Yusho oil. These percentages of TEQ contribution are consistent with those found in Yusho blood ${ }^{6}$. Furthermore, it was confirmed that $2,3,4,7,8-\mathrm{PeCDF}$ contributes 58% to the total TEQ, supporting the view that this compound is the principal causal agent in Yusho poisoning ${ }^{3}$. 3, $3^{\prime}, 4,4,5-\mathrm{PeCB}$ and $1,2,3,4,7,8-\mathrm{HxCDF}$ were found to be the second and third causative agents, contributing 16% and 12% to the total TEQ, respectively. Previous studies indicated that $2,3,4,7,8-\mathrm{PeCDF}$ and $1,2,3,4,7,8-\mathrm{HxCDF}$ are present at high levels in blood ${ }^{6,7}$ and sebum ${ }^{7}$ of Yusho patients compared to normal control. It is noteworthy that the most toxic $2,3,7,8-\mathrm{TCDD}$ was newly discovered, although it contributes only 0.1% to the total TEQ. This finding gives the explanation for the existence of $2,3,7,8-\mathrm{TCDD}$ in sebum and blood of Yusho patients ${ }^{7}$. Based on the data of Tanabe et al. ${ }^{3}$, Masuda calculated the TEQ contribution of PCDDs, PCDFs, and PCBs in Yusho oil to be 1, 91 and 8%, respectively. Furthermore, the smallest TEQ intake during the latent period was estimated to be $0.11 \mathrm{mg}^{8}$. The difference in the evaluation results of TEQ contribution in Yusho oil mentioned above is mainly attributable to the significant difference in the concentration of $2,3,4,7,8-\mathrm{PeCDF}$ between our data and those reported by Tanabe et al. ${ }^{3}$. Consequently, the TEQ of $2,3,4,7,8-\mathrm{PeCDF}$ obtained in the present study was only about $1 / 2$ that of Tanabe et al. ${ }^{3}$. Based on our data, the smallest TEQ intake during the latent period was estimated to be 0.067 mg for

Yusho patients, according to the calculation method of Masuda ${ }^{8}$. This value is 61% of that estimated by Masuda ${ }^{8}$, and suggests that a lower minimum amount is necessary for developing the toxic symptoms of Yusho.

Acknowledgements

This work was supported by CREST (Core Research for Evolutional Science and Technology) of the Japan Science and Technology Corporation. We thank the Kamino family for providing the Yusho rice oil.

Table 1. Concentrations of PCDD/Fs in Yusho rice oil (ppb)

Homolog	Isomer	Approach 1-A	Approsch 1-B	Approach 1	Hormiog	Isomer	Approach 1.A	Approsch 1-8	Approsch 1
ICOO	1389	2.2	18	2.1	PeCDF	13878	83	80	72
	1378	1.5	1.1	1.3		123581124781346711347812487	1000	680	050
	1334	0.3	0.2	0.3		1347914878	170	110	140
	12471124813781469	1.8	1.2	1.4		12478	0.0	00	0.0
	1246/1248/1268/1478	0.7	0.5	06		13469	0.0	00	0.0
	1279	0.3	0.2	03		23468/1246912347/12348	1000	700	850
	$123 / 12381269$	0.2	0.1	01		23488/1246912347112348	0.0	0.0	0.0
	12371238	0.8	06	0.8		12348	400	280	340
	2978	0.7	0.4	0.6		12378	100	71	68
	1331	0.1	0.1	01		12387	41	30	38
	1278	0.4	0.3	0.4		1287812378	210	140	180
	1267	0.0	0.0	0.0		2347812489/12679112369	780	530	860
	1289	0.1	0.1	0.1		23467	520	340	430
TCDF	1368	3.0	80	4.5		12349	6.8	5.8	6.4
	1468	29	28	29		12389	4.2	3.4	3.8
	2468	27	25	26	H $\times C D$	124879124689	34	21	28
	1247/1347/1378/1348/2246	330	350	340		123468	81	50	68
	1247/1347/1978/1346/1248	120	00	60		123878123689	100	63	82
	136711348413791298	330	250	290		123469	3.6	12	2.4
	1260114671478	45	87	66		123479	7.9	8.2	7.1
	128814671478	68	0.0	34		123678	39	32	38
	$13891237 / 2368$	280	210	250		1234671123769	31	23	27
	$2487 / 1238123811469716781234$	130	180	160	HCDF	123468	160	110	140
	2487112381238/14691878/1234	85	0.0	43		134878124878	430	350	370
	1278	. 58	47	53		134678	10	4.8	1.4
	$1287 / 1349$	29	24	27		124879	11	11.0	11
	2348123782347/2348/12491279	1400	990	1200		124889	7.1	5.1	8.4
	2381	110	73	82		1234871123478	1800	1200	1400
	3487/1288	18	14	17		123878	170	110	140
	1238	0.0	0.0	0.0		123478	39	23	31
	1289	3.1	2.5	2.8		123489123679	31	28	30
Pecoio	12468/12478	35	27	31		123889	8.0	8.7	8.4
	12489	1.0	08	0.9		234878	200	180	180
	12388	30	23	27		123769	20	23	2.2
	12478	5.5	3.8	47		123488	33	36	35
	12379	17	14	18	HpCOO	1234878	88	78	87
	12389	1.8	13	18		1234878	130	100	120
	$12487 / 12488$	2.9	20	25	H0COF	1234678	330	250	280
	12347	20	1.5	18		1238679	29	25	27
	12348	0.2	03	03		1234683	27	23	25
	12378	8.8	12	8.0		1234789	24	18	20
	12387	2.3	18	2.0	OCDD		66	53	60
	17389	25	17	2.1	OCDF		38	30	34
PeCDF	1346812468	110	84	97	PCDOFS		11000	8100	9600

Table 2. Concentrations and TEQs of 2,3,7,8-PCDD/Fs and Co-PCBs in Yusho rice oil (ppb)

	Concentration (pab)						TEO (ppb)	
	Approach 1-A	Approach 1-8	Approach 1	Approach 2	Averspe	Approach 1	Approach 2	Average
TCOD	8.0	6.7	7.8	7.4	7.6			
1P0COD	110	65	98	82	80			
i HCCDO	300	200	250	250	250			
HpCDO	230	180	210	160	180			
OCDO	88	53	80	54	57			
TCCDF	3100	2300	2700	2300	2500			
PeCOF	4500	3000	3800	3700	3700			
$\mathrm{H} \times \mathrm{COF}$	2700	2000	2400	1800	2100			
HpCDF	410	320	370	380	370			
OCDF	37	30	34	31	32			
PCDOs	710	620	820	570	590			
PCDFs	11000	7600	8300	8300	8800			
PCDOFs	11000	8100	8800	8900	8200			
2.3.7.8-0	0.7	0.4	08	0.6	0.5	08	0.5	0.5
1,2.3,7,0-D	8.8	7.2	8.0	7.5	7.8	8.0	7.5	7.8
1.2.3.4.7.8-D	8.5	B. 8	7.7	7.8	7.8	08	0.8	0.8
\| 1,2.3.8,7,8-D	44	35	40	37	38	4.0	3.7	3.8
1.2.3.7.8.8-D	27	22	25	24	24	2.5	2.4	2.4
: 1.2.3.4.8.7.8-D	130	100	120	110	110	1.2	1.1	1.1
;0c00	68	53	60	54	57	0.0	0.0	0.0
7.3.7.8-F.	150	1003	130	110	120	13	11	12
1,2,3,7,0-F	100	71	6B	200	140	4.3	10	7.2
2,3,4,7,日-F	730	570	650	710	880	330	380	350
1,2,3,4.7.8-F	880	840	780	720	740	78	72	74
1.2,3,0.7.8-F	170	110	140	110	130	14	11	13
2.3.4.6.7.E-F	200	180	180	140	180	18	14	18
1,2.3.7, 日. Q -F	3.2	3.0	3.1	2.7	2.8	0.3	0.3	0.3
1.2.3.4.B.7.e-F	330	250	280	280	290	28	2.8	2.8
1.2,3,4.7.8.0-F	24	18	20	20	20	0.2	0.2	0.2
OCDF	38	30	34	31	33	0.0	0.0	0.0
2.3.7.0-PCDDs	290	230	260	240	250	17	18	17
2,3,7, -PCDFs	2800	2000	2300	2300	2300	450	480	470
2,3,7, -PCDPF:	2900	2200	2800	2500	2500	470	480	480
PCE 81	680	550	820	510	580	0.1	0.1	0.1
PCE 77	13000	10000	12000	11000	11000	1.2	1.1	1.1
PCB 128	1100	880	980	880	880	88	89	88
PCE 189	50	39	45	31	38	0.4	0.3	0.4
Nontortho PCBs	15000	11000	13000	13000	13000	100	88	100
PCE 123				3300			0.3	
PCB 118				58000			6.8	
PCB 105				48000			4.8	
PCB 114				4500			2.3	
PCB 158				9700			4.8	
PCB 157				2400			1.2	
PCB 167				2900			0.0	
PCB 189				800			0.1	
mono-ortho PCEs				130000			18	

References

1. Nagayama, J., Masuda, Y. and Kuratsune, M. (1975) Fukuoka Acta Med. 66, 593-599.
2. Miyata, H., Takayama, K., Ogaki, J., Mimura, M., Kashimoto, T. and Yamada, T. (1989) Chemosphere 18, 407-416.
3. Tanabe, S., Kannan, N., Wakimoto, T., Tatsukawa, R., Okamoto, T. and Masuda, Y. (1989) Toxicol. Environ. Chem. 24, 215-231.
4. Mimura, K., Tamura, M., Haraguchi, K. and Masuda, Y. (1999) Fukuoka Acta Med. 90, 192-201.
5. Kashimoto, T. and Miyata, H. (1987) in: PCBs and the Environment (Wade, J. S., Ed.), CRC Press, 1-26.
6. Masuda, Y., Schecter, A. and Papke, O. (1994) Organohalogen Compd. 21, 185-188.
7. Iida, T., Hirakawa, H., Matsueda, T., Hori, T., Nakao, T. and Nakayama, J. (1997) Fukuoka Acta Med. 88, 177-185.
8. Masuda, Y. (1996) in: Yusho (Kuratsune, M., Yoshimura, H., Hori, Y., Okumura, M. and Masuda, Y., Ed.), Kyushu University Press, 47-80.
