POLYCHLORINATED NATHTHALENES - POSTERS

Pattern of Regioisomers of Polychlorinated Naphthalenes formed by Incineration: Calculated Thermodynamic Values for Subsequent Dechlorination

M. Schneider, D. Lenoir, K.-W. Schramm, A. Kettrup
GSF - National Research Center for Environment and Health, Institute of Ecological Chemistry, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany

Introduction

Polychlorinated naphthalenes, PCN, are also formed like PCDD/F's and PCB's during incineration processes. PCN exhibit similar chemical and physical properties like polychlorinated biphenyls (PCB). Some of the isomers of PCN are known to be strongly bioaccumulating and showing dioxin-like toxic properties such as chloracne and liver damages.
Thermodynamic data are a powerful tool to understand more about the formation mechanisms of these compounds during incineration processes. Since there are nearly no experimental thermodynamic values of PCN available, they have to be calculated by molecular modeling methods like semi-empirical MO methods. ${ }^{5,6,7}$

Methods and Materials

Quantum mechanical calculations of the thermodynamic stabilities of $\mathrm{Cl}_{\mathrm{x}} \mathrm{N}$ and intermediates of the dechlorination / hydrogenation from $\mathrm{Cl}_{\mathbf{x}} \mathrm{N}$ were carried out using semi-empirical Hamiltonian PM3. PM3, included in the program packet HyperChem 5.1 Professional, Hypercube, Inc., calculates $\Delta \mathrm{H}^{\circ} \mathrm{f}$ by optimizing the molecular geometry, until $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ reaches the minimum. With the $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}$ of $\mathrm{Cl}_{\mathrm{x}} \mathrm{N}$, intermediate σ-complex and $\mathrm{Cl}_{\mathrm{X}-\mathrm{I}} \mathrm{N}$, the relative $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}, \Delta \mathrm{H}^{\circ}{ }_{\text {reaction }}$ and the relative abundance x_{i} of $\mathrm{Cl}_{\mathrm{x}} \mathrm{N}$ within a homologue group were calculated.
The isomer distributions within a homologue group obtained by calculations were compared with data, collected from 5 representative fly ashes of municipal waste incinerators (FA-MWI).

Results and Discussion

The Standard Heat of Formation, $\Delta \mathrm{H}_{\mathrm{f}}$, of $\mathrm{Cl}_{8} \mathrm{~N}, \mathrm{Cl}_{7} \mathrm{~N}, \mathrm{Cl}_{6} \mathrm{~N}, \mathrm{Cl}_{5} \mathrm{~N}$ and the intermediate σ complexes of the reaction $\mathrm{Cl}_{\mathrm{X}} \mathrm{N}+\mathrm{H}^{+} \rightarrow \sigma\left[\mathrm{Cl}_{\mathrm{X}} \mathrm{N}-\mathrm{H}\right]^{+} \rightarrow \mathrm{Cl}_{\mathrm{X}-1} \mathrm{~N}+\mathrm{Cl}^{+}$as model for ipsosubstitution were calculated by PM3. Subtraction of $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \sigma\left[\mathrm{Cl}_{\mathrm{x}} \mathrm{N}-\mathrm{H}\right]^{+}$and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{F}} \mathrm{Cl}_{\mathrm{x}} \mathrm{N}$ gives the $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}$, subtraction of $\Delta \mathrm{H}^{\circ} \mathrm{Cl}_{\mathbf{X}-1} \mathrm{~N}$ and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{Cl}_{\mathrm{X}} \mathrm{N}$ gives $\Delta \mathrm{H}^{\circ}{ }_{\text {reaction }}$. With the equation $\mathrm{x}_{\mathrm{i}, \text { ectivation }}=\mathrm{f}_{\text {surt }}\left\{\exp -\Delta \mathrm{H}_{\mathrm{i}}{ }^{\circ}{ }^{2}\right.$ ativation $\left./ \mathrm{RT}\right\} /\left\{\Sigma\left(\exp -\Delta \mathrm{H}^{\circ}{ }_{\text {activation }} / \mathrm{RT}\right)\right\}$ the relative abundance $\mathrm{x}_{\mathrm{i}, \text { acivation }}$ and with equation $\mathrm{X}_{\mathrm{i} \text {, reacion }}=\mathrm{f}_{\text {stan }}\left\{\exp -\Delta \mathrm{H}_{\mathrm{i}}{ }^{\circ}\right.$ reaction $/ \mathrm{RT} /\left\{\Sigma\left(\exp -\Delta \mathrm{H}^{\circ}{ }_{\text {reaction }} / \mathrm{RT}\right)\right\}$ the relative abundance x_{i}, reaction were calculated; $\mathrm{f}_{\text {uas }}$ is a statistical factor including the educt-isomer ratios and for symmetrical educts the symmetry factor. The isomer distribution of activation and reaction is calculated by the sum of x_{i} leading to the same product but via different reaction pathways.

Table 1: $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}$ and $\Delta \mathrm{H}^{\circ}{ }_{\text {reaction }}$ of the dechlorination / hydrogenation from $\mathrm{Cl}_{8} \mathrm{~N}-\mathrm{Cl}_{6} \mathrm{~N}$ and calculated relative abundance

POLYCHLORINATED NATHTHALENES - POSTERS

Table 1 shows the dechlorination / hydrogenation pathway, the intermediate, $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}$ and $\Delta \mathrm{H}^{\circ}$ reaction and the calculated values for relative abundance $\mathrm{x}_{\mathrm{i}, \text { activation }}$ and $\mathrm{x}_{\mathrm{i}, \text { rection }}$. The lowest values of $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}$ appear always in the α-position of naphthalene moiety, these are the intermediates $\mathrm{Cl}_{\mathrm{X}} \mathrm{N}-1 \mathrm{H},-4 \mathrm{H},-5 \mathrm{H},-8 \mathrm{H}$. The results of the semi-empirical geometry optimization show that the σ-complexes in α-position are less sterically hindered compared to β-position. But more important are the values of $\Delta \mathrm{H}^{\circ}$ reaction , because they show a good relationship between enthalpy and isomer distribution. The lower the endothermic energy the higher the yield of dechlorination of the considered position. The lowest endothermic $\Delta \mathrm{H}^{\circ}{ }_{\text {racacion }}$ values show the chloronaphthalenes if one of the two chlorine in α-position is replaced. That indicates that the peri-position of two chlorine is energetically unfavored in comparison with one chlorine and one hydrogen. The lowest endothermic values of $\Delta \mathrm{H}^{\circ}$ reaction show the $\mathrm{Cl}_{\mathrm{x}} \mathrm{N}$ with four chlorine in α position ($0.9-1.1 \mathrm{kcal} / \mathrm{mol}, \alpha_{\text {peri- }}$-dechlorination), next is three chlorine in α-position and having chlorine as a neighbor in β-position or four chlorine in α-position without chlorine as a neighbor (1.7 - $1.9 \mathrm{kcal} / \mathrm{mol}, \alpha_{\text {peri }}$-dechlorination). Interesting is the behavior of dechlorination of chloronaphthalenes if there is one chlorine with one hydrogen in peri position (α^{\prime}-dechlorination) or if there is one chlorine in β-position having two chlorines as neighbors ($\beta_{\text {vic }}$-dechlorination), both nearly show the same values of $\Delta \mathrm{H}^{\circ}$ reaction ($4.3-4.5 \mathrm{kcal} / \mathrm{mol}$) what means both positions have nearly the same probability for dechlorination.
The highest values of $\Delta \mathrm{H}^{\circ}$ rection shows the dechlorination of chlorine in β-position with one or no chlorine as neighbor ($5.1-6.2 \mathrm{kcal} / \mathrm{mol}, \beta$-dechlorination).
Table 2 shows the isomer distribution calculated via $\Delta \mathrm{H}^{\circ}$ activation and $\Delta \mathrm{H}^{\circ}{ }_{\text {reaction }}$ in comparison to a mean value of fly ash of MWI's.
The main dechlorination pathway of $\mathrm{Cl}_{8} \mathrm{~N}$ is the loss of chlorine in the α-position ($\alpha_{\text {peri }}$ dechlorination) ($0.93 \mathrm{kcal} / \mathrm{mol}$ vs. $4.27 \mathrm{kcal} / \mathrm{mol}$ in β-position) leading to $1,2,3,4,5,6,7-\mathrm{Cl}_{7} \mathrm{~N}$ in 90.5% yield. This $1,2,3,4,5,6,7-\mathrm{Cl}_{7} \mathrm{~N}$ is preferably dechlorinated in the other peri-position of two chlorine ($\alpha_{\text {peri }}$-dechlorination), leading to the $1,2,3,4,6,7-\mathrm{Cl}_{7} \mathrm{~N}$ and $1,2,3,5,6,7-\mathrm{Cl}_{7} \mathrm{~N}$. Both have nearly the same heat of formation ($\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$) and therefore similar $\Delta \mathrm{H}^{\circ}$ reation and lead to the assumption both are formed in equal ratios, because both isomers coelute on a DB5 column and can only quantified as sum. The subsequent dechlorination of the both main $\mathrm{Cl}_{7} \mathrm{~N}$-isomers, $1,2,3,4,6,7-$ and $1,2,3,5,6,7-\mathrm{Cl}_{7} \mathrm{~N}$, leads among others, to the both main $\mathrm{Cl}_{6} \mathrm{~N}$-isomers $1,2,3,6,7-$ and $1,2,3,5,6-\mathrm{Cl}_{6} \mathrm{~N}$. At this point in the dechlorination pathway α^{\prime}-dechlorination and $\beta_{\text {vic }}$ dechlorination get more likely (because of the lack of $\alpha_{\text {peri- }}$-positions) and the isomer distribution becomes broader.
There is a poor relationship between calculated isomer distribution by $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}$ that indicates that the formation of $\mathrm{Cl}_{\mathrm{x}} \mathrm{N}$ on fly ash is not a kinetically controlled dechlorination reaction. But there is a good relationship between calculated isomer distribution by $\Delta \mathrm{H}^{\circ}{ }_{\text {reacion }}$ and the isomer distribution. These results strongly indicate that one of the most important formation pathways of chloronaphthalenes on fly ash of MWI's are via a thermodynamically controlled dechlorination of the perchlorinated compound. This result should be contrasted to the pattern of chlorinated dibenzodioxins ${ }^{7}$. The pattern obtained here can be explained by the reactivity of the PCDD compounds, as it was shown for the calculated HOMO - LUMO values. Our investigations on formation of chlorinated aromatics have shown, that first the perchlorinated compounds are formed, which get further dechlorinated ${ }^{8}$.

POLYCHLORINATED NATHTHALENES - POSTERS

Table 2: Isomer distribution calculated via $\Delta \mathrm{H}^{\circ}{ }_{\text {activation }}$ and $\Delta \mathrm{H}^{\circ}{ }_{\text {reaction }}$ vs. mean values of FA MWI

C17N	calc. isom.distr. \% Activation	calc. Isom.distr. \% ion Reaction	$\begin{gathered} \text { mean } \\ \% \\ F A M W i \end{gathered}$	C15N	calc. Isom.distr. \% Activation	calc. Isom.distr. \% Reaction	$\begin{gathered} \text { mean } \\ \% \% \\ \text { FAWI } \end{gathered}$
1,2,3,4,5,6,7-C77N	99.63	90.50	90.55	1,2,3,4,5-C15N	0.02	1.02	3.79
1,2,3,4,5,6,8-C7N	0.37	9.50	9.45	1,2,3,4,6-Cl5N	0.33	11.46	11.29
C16N				1,2,3,5,6-C15N	244	11.60	19.30
1,2,3,4,5,6-Cl6N	0.14	5.93	9.02	1,2,3,5,7-C15N	10.27	19.71	12.08
1,2,3,4,5,7-Ci6N	2.02	9.83	6.57	1,2,3,5,8-C15N	0.05	1.92	2.11
1,2,3,4,5,8-C16N	0.00	0.29	0.00	1,2,3,6,7-C15N	60.27	17.43	20.52
1,2,3,4,6,7-C16N	7.43	29.03	32.39	1,2,3,6,8-Cl5N	24.24	3.33	1.62
1,2,3,5,6,7-Cl6N	53.25	28.72	32.39	1,2,3,7,8-C15N	0.60	201	3.81
1,2,3,5,6,8-C16N	1.83	10.00	6.57	1,2,4,5,6-Cl5N	0.01	2.06	3.59
1,2,3,5,7,8-C16N	0.52	10.20	7.00	1,2,4,5,7-C15N	0.52	3.43	2.89
1,2,3,6,7,8-C16N	34.80	4.91	4.60	1,2,4,5,8-C15N	0.00	0.21	0.64
1,2,4,5,6,8-C16N	0.00	0.54	0.73	1,2,4,6,7-Cl5N	1.19	20.22	12.08
1,2,4,5,7,8-C16N	0.00	0.54	0.73	1,2,4,6,8-C15N	0.04	3.50	3.05
				1,2,4,7,8-C15N	0.01	2.10	3.23

References

1) Brinkman U.A.T., H.G.M. Reymer (1976): Polychlorinated Naphthalenes J. Chromatgr.127, 203-243.
2) Sanderman W. (1974): Polychlorierte aromatische Verbindungen als Umweltgifte. Naturwissenschaften 61, 207-213.
3) Asplund L., B. Jansson, G. Sundström, I. Brandt, U. Brinkmann (1986): Charactarisation of a stongly bioaccumulating hexachloronaphtalene. Chemosphere 15, 619-628.
4) Kurunthachalam Kannan, Takashi Imagawa, Alan L. Blankenship and John P. Giesy (1998) Isomer-Specific Analysis and Toxic Evaluation of Polychlorinated Naphthalenes in Soil, Sediment and Biota Collected near the Site of a Former Chlor-Alkali Plant. Environ. Sci. Technol. 32, 2507 - 2514.
5) Unsworth, J. F. and Dorans, H. (1993) Thermodynamic data for dioxins from molecular modeling computations: Prediction of equilibrium isomer composition. Chemosphere 27, 551 - 358.
6) James J. P. Stewart (1989) Optimization of Parameters for Semiempirical Methods. I. Method, J. Comput. Chem. 10, 209-220
7) A. Wehrmeier, D. Lenoir, K.-W. Schramm, R. Zimmermann, K. Hahn, B. Henkelmann, A. Kettrup (1998) Patterns of isomers of chlorinated dibenzo-p-dioxins as tool for elucidation of thermal formation mechanisms. Chemosphere 36, 2775-2801.
8) A. Wehrmeier, D. Lenoir, S. S. Sidhu, P. H. Taylor, W. A. Rubey, A. Kettrup, B. Dellinger (1998) Role of Copper Species in Chlorination and Condensation Reactions of Acetylene. Environ. Sci. Technol. 32 2741-2748
