PCDD/Fs in the New Jersey coastal atmosphere: Evidence for secondary sources and OH-radical initiated depletion reactions

<u>Rainer Lohmann^{1,3}</u>, Paul L. Brunciak², Cari L. Gigliotti², Eric Nelson², Daryl Van Ry², Thomas Glenn², Steven J. Eisenreich², Joanne L. Jones¹ and Kevin C. Jones¹

¹Department of Environmental Science, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, LA1 4YQ, UK; ²Department of Environmental Sciences, Rutgers - The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA; ³present address: Ralph M. Parsons Laboratory, 48-336, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

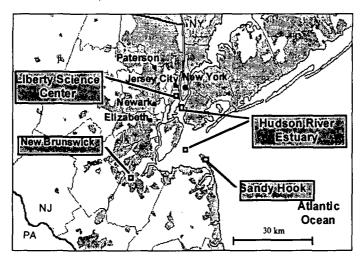
Introduction

Polychlorinated dibenzo-*p*-dioxins and furans (PCDD/Fs) are ubiquitous contaminants that are released into the environment as by-products of incomplete combustion or as chemical impurities. Atmospheric transport is believed to be the major pathway for their distribution away from sources (1,2). Air-water diffusive exchange of PCDD/Fs, investigated in the Lower Hudson River Estuary (LHRE), is a source to the atmosphere: Fugacity ratios of PCDD/Fs in the aquatic and gaseous phase indicated net volatilisation of PCDD/Fs from the water surface (3). Tracking air masses prior to and after transport over the lower HRE demonstrated significant enrichment of ambient PCDD/F concentrations, with volatilisation of the $Cl_{2-6}DDs$ and $Cl_{2-7}DFs$ being the likely cause (3).

Materials and Methods

Air samples (consecutive 12-hour day-night) were taken at three land-based sites during a weeklong sampling campaign, whilst additional over water samples were being collected (3).The sampling sites were chosen to reflect contrasting environments in New Jersey: the urban/industrial signal from the NJ-NY agglomeration (Liberty Science Centre, LSC), the coastal Atlantic environment (Sandy Hook, SH) and the suburban background (New Brunswick, NB; see Figure 1). More details on the air sampling procedure and the analytical method used is given in 3.

Results and discussion


<u>Ambient Air Concentrations</u>: Table 1 summarises the mean and the range of ambient PCDD/F concentrations (in fg/m^3) for the different sampling sites.

Ambient PCDD/F concentrations were dominated by either Cl_2DFs (NB, LSC) or Cl_2DDs (SH, HRE). The marked spatial divergence in the atmospheric PCDD/F concentrations was surprising given the proximity of the sites.

Surprisingly, $\Sigma Cl_{4.8}DD/Fs$ and ΣTEQ concentrations in the ambient air in New Jersey, despite the vicinity to the NJ-NY conurbation and being densely populated, occurred at concentrations only 2 to 3 times higher than measured at a remote Irish site (4). While the mean relative homologue profiles from the Irish and English samples matched closely, the NJ profiles did not (4).

ORGANOHALOGEN COMPOUNDS Vol. 45 (2000)

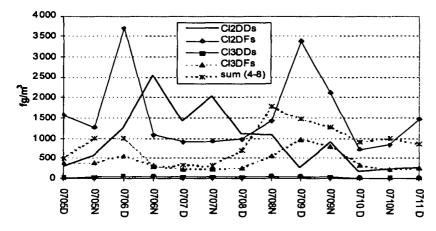
268B

Figure 1: Sampling sites around the lower Hudson River Estuary LOWER HUDSON RIVER ESTUARY

Shaded areas indicate urban areas by population density. Adapted map courtesy of The National Atlas, USGS

Table 1: Ambient PCDD/F Concentrations (ig/m) in Coastal New Jersey							
	New Brunswick		Sandy Hook		Liberty Science		HRE
	Mean	Range	Mean	Range	Mean	Range	Mean
Cl ₂ DFs	3,200	440-21,000	1,000	320-2,900	1,600	720-3,700	1,800
Cl ₃ DFs	1,000	150-4,500	340	100-1200	430	230-990	940
Cl ₂ DDs	230	79-470	2,000	940-3,900	930	170-2,500	6,500
Cl₃DDs	39	11-150	28	15-46	36	20-59	130
ΣCl ₄₋₈ DD/Fs	1,400	450-3,800	830	72-6,300	880	290-1,800	1,000
ΣTEQ [•]	· 16	3.2-55	6.6	0.6-38	8.5	1.2-19	9.5
WHO-TEF, ref. 5							

Table 1: Ambient PCDD/F Concentrations (fg/m³) in Coastal New Jersey


<u>Spatial and Temporal Variation</u> The different sites did not follow the same trends. PCDD/F concentrations at the NB site peaked on the days of July 6 and 7, with $\Sigma Cl_{4.8}DD/Fs$ of ~ 4,000 fg/m³, but none of the other sites had higher concentrations for those day-time samples. Similarly, at the marine coastal site at SH, $\Sigma Cl_{4.8}DD/Fs$ increased to 6,300 fg/m³ on the night of July 9, which was not observed at the other sites. The LSC site showed the least variation over the course of the sampling campaign with $\Sigma Cl_{4.8}DD/F$ concentrations not exceeding 2,000 fg/m³.

ORGANOHALOGEN COMPOUNDS Vol. 45 (2000)

<u>Sandy Hook</u> Ambient PCDD/F concentrations at the coastal site exhibited the biggest variation of any site; An exception to the strong fluctuation of ambient PCDD/F concentrations at marine coastal SH site was exhibited by the $Cl_{2-3}DDs$. Both homologue groups displayed stable concentrations with max/min ratios of 3 to 4. This again is indicative of local source(s) of these PCDD/Fs to the atmosphere, most likely volatilization from the HRE surrounding the SH site (3).

<u>Liberty Science Center</u> Ambient PCDD/F concentrations at LSC displayed the least variation of all land-based sites: $Cl_{2.6}DFs$ and $Cl_{3.5}DDs$ varied only by factors of ~ 5 over the entire sampling campaign; Cl_2DDs concentrations were <u>highest for the night-samples</u> of July 06 and 07 (see Figure 2).

Figure 2 Ambient concentrations of Cl₂DDs, Cl₂DFs, Cl₃DDs, Cl₃DFs and Σ Cl₄BD/Fs at LSC

<u>OH radical depletion of Cl₂DDs</u>: The atmospheric depletion of a gaseous compound due to reaction with OH-radicals should be measurable in the field, if certain conditions apply, namely: i) samples need to be taken close to a continuous atmospheric source of the compounds; ii) the source must be strong compared to advective ('background') transport and / or calm ambient conditions must dominate; iii) separate day and night samples should be taken reflecting the pronounced day-night differences in atmospheric OH-radical concentrations (6); iv) the compound of interest must be sufficiently labile to display analytically-detectable changes. Our day-night sampling program in July at the LSC, next to the NY Harbor, a known source of atmospheric Cl_2DDs , fulfilled all the criteria mentioned above.

Estimation of the ambient Cl₂DD half-life: Average atmospheric OH-radical concentrations for a site at 40°N in July were estimated to be ~ 4 x 10⁶ molecules/cm³ for the day and approximately zero during the night (6). The pseudo first-order rate constant (k'_{OH}^{obs}) of a compound X with OH-radicals is defined as: $k'_{OH}^{obs} = \ln (C_{dsy}/C_{night})/t$ with C_{night} the concentration of the compound at reaction time t=0 (prior to reaction with OH-radicals) and C_{dsy} the concentration of the compound at reaction time t. For the night samples of July 06 to 09, Cl₂DD night-time concentrations were compared to their day-time concentrations: the mean k'_{OH}^{obs} was ~1.5 day⁻¹ (0.9-2.8 day⁻¹). Comparing the laboratory-derived half-lives with our field results (normalized to 1x10⁶ OH-

ORGANOHALOGEN COMPOUNDS Vol. 45 (2000)

radicals/cm³) gives the following: Cl₂DD - $t_{1/2}$ (this study) 1.8 days (1.0-3.0 days); Cl₂DD - $t_{1/2}$ 1.4-1.7 days (Kwok *et al.*; 7).

To our knowledge, this is the first time that field evidence has been presented for the atmospheric reaction of PCDD/Fs with OH-radicals. The excellent agreement of laboratory and field half-lives for Cl₂DDs also supports our contention that the lower HRE supplies the surrounding atmosphere with a range of PCDD/Fs, notably Cl₂DDs. Taken together, there is little evidence of major local primary PCDD/F emission sources for the coastal sites during this sampling period in summer 1998.

Acknowledgements

We thank J. Dachs of Rutgers University for his helpful discussions and N. Green (Lancaster University) for assistance with the HRGC-MS. This research was funded in part by the Hudson River Foundation, the NJ Sea Grant College Program (NOAA), The NJ Department of Environmental Protection and the NJ Agricultural Experiment Station. R. Lohmann acknowledges the financial support of the DAAD (German Academic Exchange Service) for a postdoctoral fellowship.

References

- 1. Ballschmiter, K.; Bacher, R. Dioxine. VCH, Weinheim, 1996: ISBN 3-527-28768-X.
- 2. Rappe, C. Chemosphere 1992, 25, 41-44.
- 3. Lohmann, R.; Nelson, E.; Eisenreich, S.J.; Jones, K.C. Environ. Sci. Technol. 2000, June issue
- 4. Lohmann, R.; Green, N.J.L.; Jones K.C; Environ. Sci. Technol. 1999, 33, 2872-2878.
- Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.C.; Brunström, B.; Cook, P.; Feeley, M.; Gisey, P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; Kubiak, T.; Larsen, J.C.; van Leeuwen, R.F.X.; Liem, A.K.D.; Nolt, C.; Peterson, R.E.; Poellinger, L.; Safe, S.; Schrenk, D.; Tillit, D.; Tysklind, M.; Younes, M.; Waern, F.; Zacharewski, T.; *Environ. Health Persp.* 1998, 106, 775.
- 6. Derwent, R.G. Phil. Trans. R. Soc. Lond. A 1996, 354, 501-531.
- 7. Kwok, E.S.C.; Arey, J.; Atkinson, R. Environ. Sci. Technol. 1995 29, 1591-1598.

ORGANOHALOGEN COMPOUNDS Vol. 45 (2000)