A Compendium of Worldwide Dioxin Levels

Ray K. Forrester,* Jurgen Exner,** and Sandra L. Potter*

^{*}The Forrester Group, 605 N. Boonville Avenue, Springfield, Missouri, 65806 USA ^{**}JHE Technology Systems, 170-F Alamo Plaza, Suite 180, Alamo, California, 94507 USA

Introduction

In 1998, The Forrester Group and JHE Technology Systems performed a literature review to summarize available, practiced, and proposed dioxin remediation cleanup values in soils and sediments. The review also included research on available levels of dioxins found in terrestrial, riparian, estuarine, and oceanic environments. The goal was to provide a comprehensive summary of the current status of dioxin cleanup values throughout the world. The final document also included a review of worldwide maximum allowable daily intake values for dioxin and trends in dioxin remediation technologies.

Material and Methods

The review was based upon information obtained from the United States Environmental Protection Agency, the United States Corps of Engineers, Internet research, state environmental agencies within the United States, scientific journals, and personnel communication with a variety of environmental agencies throughout the world. It was also based upon personnel experience at a number of dioxin sites in the United States and Germany.

Dioxin data was readily accessible for a variety of sites within the United States. Data for Western Europe was more difficult to access. Data for Asia, Eastern Europe, and Central and South America was extremely limited.

Results and Discussion

Table 1 provides practiced and proposed cleanup values for sediments and soils throughout the world. The majority of these values are for soils at sites located within the United States. The issue of dioxin-contaminated sediments has only recently begun to receive attention, and such information is limited. This research is on-going as new sites are discovered worldwide and as regulatory agencies continue to review the impact of dioxin upon human health and the environment.

ORGANOHALOGEN COMPOUNDS 321 Vol. 43 (1999)

SITE NAME	LOCATION	MEDIA	PRACTICED CLEAN-UP
			LEVEL (ppb)
Air Force Project	MS - USA	soil	0.1
American Cresote Works	FL - USA	soil	0 - 20
American Crossarm & Conduit Co.	WA - USA	soil	0.0067
Arkwood, Inc.	AR - USA	soil	20
Broaderick Wood Products	CO - USA	soil	0.6
Coal Creek AKA Ross Electric	WA - USA	incinerator ash and	< 1
		solids	
Coleman-Evans Wood Preserving	FL - USA	soil	0.007
Diamond Alkali	NJ - USA	soil	7
Eastern Diversified Metals	PA - USA	soil	20
Ellisville Site Area	MO - USA	soil	1
Escambia Treating Company	FL - USA	soil	0.2
J.H. Baxter & Co.	CA - USA	soil	1
Jackson Municipal Landfill	AR - USA	soil	10
Koppers	NC - USA	soil	7
Koppers Oroville Plant	CA - USA	soil	1 - 30
Libby Groundwater	MT - USA	soil	1 - 20
Love Canal	NY - USA	soil	1
MacGillis & Gibbs/Bell Lumber	MN - USA	soil	1
Marzone/Chevron Site	GA - USA	soil	0.2
McClellan Air Force Base	CA - USA	soil	1
Minker/Stout/Romaine Creek	MO - USA	soil	1 - 20
NAS Whidbey Island	WA - USA	soil	0.0067
Naval Seabees Center	MS - USA	soil	0.005
Ogden Defense Depot	UT - USA	soil	1
Pristine	OH - USA	soil	1
Rogers Road Municipal Landfill	AR - USA	soil	1 - 10
Salem Acres	MA - USA	soil	1
Selma Pressure Treating	CA - USA	soil	1
Shenandoah Stables	MO - USA	soil	1
Silresim Chemical	MA - USA	soil	1
Syntex Facility	MO - USA	soil	20
Texarkana Wood Preserving	TX - USA	soil	20
Times Beach	MO - USA	soil	1
United Creosoting	TX - USA	soil	1 - 20
Various Superfund sites	MO - USA	soil	1

Table 1 Practiced and Proposed Clean-up Levels for Dioxin in Soils and Sediments

ORGANOHALOGEN COMPOUNDS Vol. 43 (1999) 322

Vertac	AR - USA	soil	1
SOURCE	LOCATION	MEDIA	PROPOSED
			CLEAN-UP
United States Army Corps of	United States	sediment	
Engineers	Officed States	seament	1
United States Environmental	United States	sediment	0.004
Protection Agency - Region X			
Wisconsin Department of Natural	United States	sediment	0.001
Resources			
SOURCE	LOCATION	MEDIA	PROPOSED
			CLEAN-UP
Washington State Department of	United States	sadimant	0.0067
Feology	United States	seament	0.0007
New Jersev Department of	United States	sediment	3.3 - 20.4 OC -
Environmental Protection			fish
New York State Department of	United States	sediment	10 OC -humans
Environmental Conservation			0.2 OC - wildlife
International Joint Commission,	United	sediment	0.01
Great Lakes Science Advisory Board	States/Canada		0.01
Environment Canada/Pacific Yukon	Canada	sediment	0.01
Region British Columbia Province	Canada	soil	1 residential
British Columbia Province	Callada	5011	0.01 - agricultural
Hamburg Department of	Germany	sediment	0.005 - 0.01
Environment	5		
	Germany	soil	10 - industrial
			1 - residential
			0.1 - agricultural
	Italy	soil	0.04 - residential
			0.005 -
Moss American Superfund site	United States	sediment	
Wisconsin	United States	scuillent	0.55 00
Homebush Bay Area	Australia	sediment	5

NOTES:

In most instances, the cleanup level is applied either specifically to the 2,3,7,8-TCDD isomer, or to the TEQ.

OC = normalized to organic carbon.

ORGANOHALOGEN COMPOUNDS 3 Vol. 43 (1999)

323

Acknowledgements

We would like to acknowledge the diligent research performed by the staffs of The Forrester Group and JHE Technology Systems.

References

- Clarke, A.N. et al. (November 2, 1994). "A Review of Polychlorinated Dibenzofurans and Polychlorinated Dibenzodioxins in Sediments in the United States and International Waterways." *Hazardous Waste & Hazardous Materials*. vol. 11, 253-275.
- 2. Coulston, Frederick and Pocchiari, Francesco, ed. (1983). Accidental Exposure to Dioxins Human Health Aspects. Ecotoxicology and Environmental Quality Series. Academic Press. London.
- 3. De Rosa, Christopher, et al. (1997). "Dioxin and Dioxin-Like Compounds in Soil, Part I: ATSDR Interim Policy Guideline." *Journal of Clean Technology, Environmental Toxicology, and Occupational Medicine*. vol. 6, (2):117-126.
- 4. De Rosa, Christopher, et al. (1997). "Dioxin and Dioxin-Like Compounds in Soil, Part II: Technical Support Document for ATSDR Interim Policy Guideline." *Journal of Clean Technology, Environmental Toxicology, and Occupational Medicine*. vol. 6, (2):127-138.
- Jannuzzi, T.J., Bonnevie, N.L., and Wenning, R.J. (1995). "An Evaluation of Current Methods for Developing Sediment Quality Guidelines for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin." Archives of Environmental Contamination and Toxicology. vol. 28, 366-377.
- 6. Paper: Dioxin Treatment Technologies. OTA-BP-O-93.
- 7. USEPA. Office of Solid Waste and Emergency Response. (August 1987). *National Dioxin Study.* PB88192687.
- 8. USEPA. Office of Research and Development. (June 1994). *Estimating Exposure to Dioxin-Like Compounds*. Executive Summary. EPA/600/6-88/005Ca. vol. 1.
- 9. USEPA. web pages regarding Superfund sites, dioxin levels, and dioxin remediation levels.
- 10. US Army Corps of Engineers. web pages regarding for sediment contamination and remediation.
- 11. Personal communication with environmental agency representatives in the United States and Europe.

ORGANOHALOGEN COMPOUNDS 324 Vol. 43 (1999)