Results from the Third Round of the International Intercalibration Study on PCDDs, PCDFs and planar PCBs: Part 2 Soil/Sewage Sludge

Bert van Bavel¹, Håkan Wingfors¹, Christoffer Rappe¹ and Nobuo Takeda²

¹Institute of Environmental Chemistry, Umeå University, S-901 87 Umeå, Sweden ²Department of Environmental Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Introduction

As part of the third round of the international intercalibration, a laboratory inter-comparison study on soil and sewage sludge samples was organised. Both soil and sludge samples can contain dioxin levels in varying concentration. This introduces extra difficulties in the determination of PCDDs, PCDFs and planar PCBs for this kind of samples. To assure the quality of the analytical data it is important that inter-laboratory comparison studies are organised. The here presented study is an example of such a study.

Material and Methods

For the first part of the study three soil samples were distributed from two sample sites. Before distribution the samples were homogenised, sieved (0.5cm) and air-dried for 48 hours. The soils were than ground and homogenised again and put in small vials for shipment. Soil A and B originated from the same industrial site whereas soil C was taken from a former gasworks facility. Two sewage sludge samples prepared the same way, apart from a longer drying period (5 days), and a standard solution were send for the second part of the study. All participants were asked to consider the samples as a routine sample and use their own extraction and clean up protocols plus quantification standards.

Results and Discussion

In total 32 labs participated of which 29 were able to submit the results before the expiration of the dead line. The results for the best performing labs for first three soil are given in Table 1. The inter-laboratory variation between the samples from the same batch (A and B) was small compared to the variation between the different laboratories. The results for the highly contaminated showed good agreement between the participants. Although the samples were also highly contaminated with polychlorinated naphthalene's (PCNs) were most labs able to report the high levels. PCDFs mainly dominated the TEQs and larger variation in lower levels of PCDDs did not influence the TEQ results. The low-level soil C showed much larger variation at levels just above the detection limit for most labs. Also the extraction efficiency of this soil with an extreme high carbon content might contribute to the large variation in results.

ORGANOHALOGEN COMPOUNDS Vol. 35 (1998)

(Statistics of the results of	Average	Median	Min	Max	RSD	%RSD
2,3,7,8-TeCDD	0.014	0.015	0.003	0.030	0.008	56%
1,2,3,7,8-PeCDD	0.02	0.01	0.01	0.17	0.04	174%
1,2,3,4,7,8-HxCDD	0.01	0.01	0.00	0.03	0.01	62%
1,2,3,6,7,8-HxCDD	0.01	0.01	0.01	0.04	0.01	65%
1,2,3,7,8,9-HxCDD	0.02	0.01	0.00	0.16	0.04	186%
1,2,3,4,6,7,8-HpCDD	0.09	0.08	0.06	0.17	0.03	30%
	0.6	0.5	0.4	1.0	0.2	29%
0.0.7.0.T.ODE	22.20	22.50	45.00	00.50	4.00	
2,3,7,8-TeCDF			15.00	29.59	4.82	22%
1,2,3,7,8-PeCDF	10.05 8.29	9.08 7.91	6.22 5.67	20.84 14.30	3.46 1.71	34%
2,3,4,7,8-PeCDF	8.29	8.28				21% 12%
1,2,3,4,7,8-HxCDF	8.29 1.79	0.20 1.72	6.01	11.02	0.96	
1,2,3,6,7,8-HxCDF	0.39	0.18	1.34	2.56	0.29	16%
1,2,3,7,8,9-HxCDF	0.66	0.18	0.09	1.59 1.00	0.42	107%
2,3,4,6,7,8-HxCDF	2.0	1.9	0.16		0.25	39%
1,2,3,4,6,7,8-HpCDF	2.0 0.6	0.6	1.3	3.0 0.9	0.4	21%
1,2,3,4,7,8,9-HpCDF	4.3	0.0 4.1	0.480		0.1	16%
OCDF	4.3	4.1	2.864	10.1	1.5	34%
PCB #77	0.47	0.41	0.16	1.77	0.40	86%
PCB #126	0.06	0.05	0.02	0.20	0.04	68%
PCB #169	0.03	0.02	0.01	0.12	0.03	104%
TEQ	7.99	7.89	6.11	11.20	1.25	16%
Soil B						: <u>-</u>
Statistics of the results of	f all 29 reporting					
	Average	Median	Min	Max	RSD	%RSD
2,3,7,8-TeCDD	0.012	0.013	0.002	0.020	0.006	51%
I,2,3,7,8-PeCDD	0.03	0.01	0.00	0.16	0.05	159%
1,2,3,4,7,8-HxCDD	0.02	0.01	0.00	0.12	0.03	161%
,2,3,6,7,8-HxCDD	0.02	0.01	0.01	0.16	0.03	183%
,2,3,7,8,9-HxCDD	0.02	0.01	0.00	0.14	0.04	163%
1,2,3,4,6,7,8-HpCDD	0.11	0.08	0.06	0.25	0.06	57%
	1	1	0	2	0	41%
3,7,8-TeCDF	20.87	19.78	13.26	29.90	4.63	22%
2,3,7,8-PeCDF	9.41	8.63	5.27	18.22	3.05	32%
2,3,4,7,8-PeCDF	7.96	7.99	4.58	11.83	1.31	16%
	7.30	7.05	4.30	10.01	1.01	450/

.

Table 1 The results of intercalibration 2 Soil (Part 1)

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

OCDF

PCB #77

PCB #126

PCB #169

TEQ

7.79

1.67

0.50

0.65

1.8

0.6

4.0

0.43

0.05

0.03

7.62

7.95

1.68

0.17

0.66

1.8

0.6

3.8

0.34

0.05

0.02

7.80

4.76

1.20

0.11

0.15

1.2

0.4

2.7

0.13

0.02 0.01

5.00

10.21

2.41

3.42

1.66

2.9

0.9

6.6

1.46

0.10

0.13

9.75

1.15

0.27

0.73

0.30

0.4

0.1

0.8

0.34

0.02 0.04

1.07

ORGANOHALOGEN COMPOUNDS Vol. 35 (1998)

15%

16%

146%

47%

21%

18%

19%

78%

45%

124%

14%

Table 1 Continued.

Soil C (Statistics of the results of t	he all 29 reno	rting labs)*				
Totalistics of the results of t	Average	Median	Min	Max	RSD	%RSD
2,3,7,8-TeCDD	0.002	0.001	0.000	0.010	0.002	132%
1,2,3,7 8-PeCDD	0.003	0.002	0.001	0.008	0.002	68%
1,2,3,4,7,8-HxCDD	0.002	0.001	0.001	0.007	0.002	91%
1,2,3,6,7,8-HxCDD	0.004	0.003	0.001	0.010	0.002	66%
1,2,3,7,8,9-HxCDD	0.003	0.002	0.001	0.015	0.003	96%
1,2,3,4,6,7,8-HpCDD	0.034	0.010	0.005	0.490	0.100	290%
OCDD	0.14	0.03	0.01	2.45	0.50	349%
·						
2,3,7,8-TeCDF	0.016	0.011	0.006	0.063	0.013	77%
1,2,3,7,8-PeCDF	0.007	0.006	0.003	0.017	0.004	54%
2,3,4,7,8-PeCDF	0.006	0.005	0.003	0.014	0.003	50%
1,2,3,4,7,8-HxCDF	0.008	0.006	0.004	0.018	0.005	57%
1,2,3,6,7,8-HxCDF	0.005	0.003	0.002	0.014	0.004	84%
1,2,3,7,8,9-HxCDF	0.003	0.001	0.000	0.011	0.004	138%
2,3,4,6,7,8-HxCDF	0.003	0.002	0.000	0.018	0.004	120%
1,2,3,4,6,7,8-HpCDF	0.02	0.01	0.00	0.15	0.03	131%
1,2,3,4,7,8,9-HpCDF	0.002	0.00	0.00	0.01	0.00	137%
OCDF	0.02	0.01	0.00	0.13	0.03	119%
PCB #77	0.044	0.016	0.000	0.230	0.066	150%
PCB #126	0.009	0.002	0.000	0.050	0.016	182%
PCB #169	0.010	0.000	0.000	0.050	0.018	179%
TEQ	0.010	0.007	0.001	0.02	0.01	63%

* Three participants only reported detection limits for this low contaminated soil.

Conclusions

The analysis of soil samples with high concentrations of PCDFs showed good agreement among all participants (RSD 14-16%). Interference's of high levels of PCNs were present but did not seem to influence the results. The results from a low-level soil with a high carbon content showed much larger variation among the laboratories.

Intercalibration exercises are an essential tool in the assurance of the quality of dioxin analysis. These kinds of studies enable laboratories to improve their analytical capacity or confirm their capability. This way data acquired by different laboratories will be directly compatible, both form a scientific and a legislative point of view.

Acknowledgement

p.

Þ

All participants mentioned in Table 2 are thanked for their participation and constructive comments. B.G. Chittim, Wellington Laboratories is thanked for supplying the standard solution used in this study and Ulrika Haapaieni, Umeå Kommun, for supplying the sewage sludge sample.

Table 2. Participants in the third round of the International Intercalibration

Participants	Organization	Country
Toshihiko Yanagi	Japan Food Research Laboratories 6-11-10 Nagayama, Tama-shi, Tokyo 206	Japan
Takumi Takasuga	Shimadzu Techno Research 2-4 Nishinokyo-Sanjyo, Nakagyo-ku, Kyoto 604	Japan

Participants	Organization	Country
Takahiko Matsueda	Fukuoka Institute of Health and Environ. Sci. Mukaisano 39, Dazaifu, Fukuoka 818-01	Japan
YC. Ling	National Tsing Hua University Department of Chemistry, Hsinchu 30043	Taiwan
Ludwig Stieglitz/ K. Jay	Forschungzentrum Karlruhe P.O.Box 3640, 76021 Karlsruhe	Germany
Roland Haag	TUV Ecoplan Umwelt GmbH Grabenwiesenstrasse 4, 73072 Donzdorf	Germany
Bert Schatowitz/Armin Hauk Denis Hundsbuchler	Ciba Speciality Chemicals Inc. R-1055.5.04, CH-4002 Basle	Switzerland
Robert Symons/Peter Day	Wellington Science Centre Gracefield Road, Lower Hutt	New Zealand
Derek Craston/David Carter Brian Stuart	Laboratory of the Goverment Chemist (LCC) Queens Road, Teddington, Middlesex TW11 OLY	United Kingdom
Dale Hoover/Coreen Hamilton Katharine Kaye	Axys Analytical Services Ltd. 2045 Mills Road, Sidney, BC V8L 358	Canada
Daniel Fraisse	CARSO 321, avenue Jean Jaurés, F - 69362 Lyon Cedex 07	France
Martin Schlabach	NILU, Norwegian Institute for Air Research Instituttveien 18, N-2007 Kjeller	Norway
Maximilian Swerev/D. Dautzenberg	Bayerisches Institut fur Abfallforschung Am Mittleren Moos 46A, D-86167 Augsburg	Germany
Sylvia Cussion	Ontario Ministry of Environment and Energy 125 Resources Rd., Etobicoke, Ontario, M9P 3V6	Canada
Jørgen Vikelsøe	National Environmental Research Institute Frederiksborgvej 399, DK-4000 Roskilde	Denmark
Rose West	Triangle Laboratories, Inc. 801 Capitola Drive, Durham, NC 27713	USA
I-Fu Shen	National Inst. of Environmental Analysis 10th Floor No. 233-2, Pao-Chiao RD, Hsien-Tien	Taiwan
Esteban Abad/Ethel Eljarrat Josep Rivera	CID-CSIC, Lab. de Dioxines Calle Jorge Girona 18-26, 08034 Barcelona	Spain
Diane Wagrowski/Ron Hites	Department of Chemistry, Geology 541 Indiana University, Bloomington IN 47405	USA
Gerhard Thanner/Wolfgang Moche	Federal Environment Agency-Austria Spittelauerlaende 5, A-1090 Vienna	Austria
Terttu Vartiainen/Hannu Kiviranta	National Public Health Institute, Dept. of Chemistry P.O. Box 95, FIN-70701 Kuopio	Finland
Carmen Rodriguez-Larena	Environmental Laboratory, Institut Químic de Sarrià Via Augusta 390, 08017-Barcelona	Spain
Brock Chittim/Colleen Tashiro	Wellington Laboratories 398 Laird Road, Guelph, Ontario, N1G 3X7	Canada
Jamshid Hosseinpour Gabriel Waechter	Ökometric GmbH Bernecker Str. 17-21, D-95448 Bayreuth	Germany
Chung Chiu	Environmental Technology Centre 3439 River Road South, Ottawa, Ontario	Canada
Charles Brochu	Dioxin Laboratory, Environment Quebec 850 Vanier, Laval, Quebec	Canada
Tomas Ocelka/Roman Grabic	OHS Frydek-Mistek Palackeho 121, 738 01 Frydek-Mistek	Czech Republic
Dr. Patrick W. O'Keefe	Wadsworth Center, New York State Dept. of Health PO Box 509, Empire State Plaza, Albany, NY 12201	USA
Gyorgy Istvan Toth	IEM's Institute for Environmental Protection Alkotmany u. 29, Budapest 1053	Hungary
Patrick Pond/Chester Lastoria	Trace Organics, Environmental Sciences Division 5540 McAdam Road, Mississauga, Ontario I4Z 1P1	Canada

ORGANOHALOGEN COMPOUNDS Vol. 35 (1998) •