Bioconcentration Factors (BCFs) of Specific Persistent Polychlorinated Bornane (Toxaphene) Congeners in Fish and Comparison with Bioaccumulation Factors (BAFs) of Biota from the Marine Environment

<u>Harald J. Geyer</u>¹, Andreas Kaune^{1,2}, Karl-Werner Schramm¹, Gerhard Rimkus³, Walter Vetter⁴, Antonius Kettrup^{1,2} and Derek C. G. Muir⁵

¹ GSF – National Research Center for Environment and Health GmbH, Munich, Institute of Ecological Chemistry, P.O. Box 1129, D–85758 Neuherberg, Germany

² Technical University of Munich, Institute of Ecological Chemistry and Environmental Analysis, D-85350 Freising, Germany

³ Food and Veterinary Institute (LVUA) Schleswig-Holstein, Department of Residue and Contamination Analysis, P.O. Box 2743, D-24517 Neumünster, Germany

⁴ Friedrich-Schiller-Universität Jena, Institut für Ernährung und Umwelt, Dornburger Straße 25, D–07743 Jena, Germany

⁵ National Water Research Institute, Environment Canada, Burlington, Ontario, Canada L7R 4A6

Introduction

Polychlorinated bornanes are the main components of toxaphene which is produced by chlorination of camphene under UV light. Toxaphene is a complex mixture of at least 180 to 190 components, mostly with the formula $C_{10}H_{18-n}Cl_n$ or $C_{10}H_{16-n}Cl_n$ where n is 6–10¹⁻⁴⁾. Toxaphene was first produced in the USA and became one of the most heavily used pesticide for several decades. The global usage of toxaphene from 1950 to 1993 has been estimated to be about 1.33 million tons⁵⁾. This pesticide was banned in many countries (USA, Canada, Western Europe) due to its persistence and biological effects. However, it is still used in other countries. These chlorinated bornanes have been globally dispersed largely by atmospheric transport to the same extent as polychlorinated biphenyls (PCBs), DDT, lindane, and other hexachlorocyclohexanes^{6.7)}. Due to its long-range transport, stability, and high bioaccumulation potential toxaphene belongs to the persistent organic pollutants (POPs). Especially the polychlorinated bornanes are major contaminants in sediments, fish, marine mammals, human milk, and other biota.

However, in the course of examining these residues in biota it was noticed that their GC pattern was different compared to toxaphene standard⁸⁻¹³⁾. Differences in GC pattern might be caused by photodegradation, selective bioaccumulation, and/or metabolism in aquatic and terrestrial organisms including humans⁶⁻¹³⁾. Due to the differences in the toxaphene composition in environmental samples a precise toxaphene-residue analysis requires the availability of pure chlorinated bornane indicator congeners. At this time the research group of H. Parlar succeeded

ORGANOHALOGEN COMPOUNDS Vol. 35 (1998) in producing the 22 most important single congeners of toxaphene^{14,15}, which are commercially available from Ehrenstorfer (Augsburg, Germany) or Promochem (Wesel, Germany). About 25 chlorinated bornanes are regularly found in environmental samples. Most of the nona- and decachlorobornanes are normally absent, while many of the hexa- and heptachlorobornanes as well as some of the octa- and nonachlorobornanes are detected in sediments, fish and other biotic samples^{11-18,24-29}. A study by Vetter et al.¹⁸ showed that 11 polychlorinated bornanes were abundant in different seal species.

In this regard it is interesting to know the bioconcentration factors (BCFs) of these and other polychlorinated bornane congeners, which are regularly found in aquatic organisms. However, up to this time no bioconcentration tests with single congeners with fish or other aquatic organisms have been performed. The aim of this study was to predict bioconcentration factors of some relevant chlorinated bornanes in fish. Furthermore, the bioconcentration factors on a lipid basis (BCF_L) in fish were compared with bioaccumulation factors on a lipid basis (BAF_L) of two chlorinated bornane congeners determined in the aquatic environment.

Materials and Methods

The n-octanol/water partition coefficients (log K_{ow}) of the single chlorinated bornane congeners were calculated by means of the LOGKOW program of Meylan and Howard^{20,21}. Furthermore, the log K_{ow} values were calculated on the basis of the measured log K_{ow} value of 5.28 for 1,2,3,4,7,7-hexachloro-2,5-norbornadiene which was determined by the HPLC method by Veith et al.²²⁾. By means of the quantitative structure-activity relationship (QSAR) of Mackay (eq. 1) log BCF_W = 1.00 log $K_{ow} - 1.32$ (1)

the bioconcentration factors on a wet weight basis (BCF_W) of the chlorinated bornanes in fish were predicted. These BCF_W values refer to fish with a lipid content of ca. 5 % and were recalculated to bioconcentration factors on a lipid basis (BCF_L). Furthermore, the BCF values were compared with the bioaccumulation factors (BAFs) of Parlar No. 26 and No. 50 which were calculated by dividing the measured concentrations in zooplankton and different fish species from the aquatic environment²³) by the measured concentrations in the water.

Results and Discussion

The 7 most important persistent polychlorinated bornanes with their IUPAC name, Parlar numbers, different abbreviations, chemical structure, log K_{ow} and predicted bioconcentration factors (BCF_W and BCF_L) in fish are compiled in Table 1. The predicted BCF_L values of hepta-, octa- and nonachlorobornanes are between 600,000 and 71,000,000, and the predicted BCF_W values of these congeners in fish with 5 % lipid range from ca. 32,000 to 3,500,000. Furthermore, in Table 1 the BAF_W and BAF_L values of two polychlorinated bornane congeners (Parlar No. 26 and No. 50) are included which were calculated by the authors from the measured concentrations in zooplankton and different fish species and the water of a Canadian fresh water lake²³⁾. It is obvious that the BAF values of the chlorinated bornanes calculated from concentrations in aquatic organisms and water from the environment are by a factor between 1 and ca. 70 greater than the BCFs predicted from the log K_{ow} values. This can be explained in part by bioaccumulation and/or biomagnification.

Table 1. Chemical name, chemical structure, n-octanol/water partition coefficient (log K_{ow}), and predicted bioconcentration factors (BCFs) of 7 persistent Polychlorinated Bornanes with high bioconcentration potential. The measured log K_{ow} values and the measured BCFs of hexachloronorbornadiene and heptachloronorbornene are presented for comparison.

Chemical	Chemical structure	log Kow	Bioconcentration f	actor (BCF) in
IUPAC name			fish and other aqu	atic organism
(Parlar No., No. of Andrews				•
and Vetter, No. of Oehme, and		1		
other abbreviations)			BCFw ^{a)}	BCFL ^{b)}
(±)-2-exo,3-endo,5-exo,9b,9c,	CI H	5.80 ^{c)}	fish (lipid: 5 %)	
10a,10b-Heptachlorobornane	Ch., 9 7 8		31,500 ⁹⁾	630,000 ⁹⁾
(TOX 7, B7 - 1457 ⁱ⁾)	∣ н н № н с	ļ]
	12 4 5	5.93 ⁹⁾	43,000 ^{g)}	850,000 ⁹⁾
	н с н			
(±)-2-endo,3-exo,5-endo,6-exo,	н сі	5.98 ^{c)}	fish (lipid: 5 %)	
8b,8c,10a,10c-Octachloro-	Hund		48,000 ⁹⁾	1,000,000 ⁹⁾
bornane	а "М"н н			
(Parlar No. 26, TOX 8, T 2,	j j	6.11 ⁹⁾	65,000 ⁹⁾	1,300,000 ^{g)}
B8 - 1413 ⁱ⁾ , 169-603 ⁱ⁾)	H" /"ci		_	
	H	(zooplankton	
			(1.48 %)	
			163,000 ^{h)}	11,000,000 ^{h)}
		1		
			long-nose sucker	
			(0.96 %)	
			133,000 ⁿ⁾	13,900,000 ^{h)}
			lake whitefish	
		l	(2.69 %)	
			800,000 "	30,000,000 ""
			$E = e = 0.000^{h}$	67 500 000 ^{h)}
	нс	6 05 ⁰	5,000,000	67,500,000
(\pm) -2-endo,3-exo,5-endo,6-exo,		0.05	nsn (lipid: 5 %)	1 100 000 9)
homane			50,000	1,100,000
(Parlar No. 40, B8 - 1414 ⁱ⁾		6 18 ^{e)}	76 000 ⁹⁾	1 500 000 ^{g)}
$(297 - 243^{i})$	ну Тала	5	. 0,000	.,000,000
	н			
	U			

ORGANOHALOGEN COMPOUNDS Vol. 35 (1998)

k

Table 1 continued.				
Chemical IUPAC name (Parlar No., No. of Andrews and Vetter, No. of Ophme, and	Chemical structure lo	log K _{ow}	Bioconcentration factor (BCF) in fish and other aquatic organism	
other abbreviations)			BCFw ^{a)}	BCF ^{b)}
(±)-2-exo,3-endo,5-exo,8c,9b, 9c,10a,10b-Octachlorobornane (Parlar No. 41, B8 - 1945 ¹⁾ , 41 - 643 ¹⁾)		6.05 ^{c)} 6.18 ^{e)}	fish (5% lipid) 56,000 ^{g)} 76,000 ^{g)}	1,120,000 ⁹⁾
(±)-2-exo,5,5,8c,9b,9c,10a,10b- Octachlorobornane (Parlar No. 44, B8 - 2229 ⁱ⁾ , 97 - 643 ⁱ⁾)		6.79 ^{c)} 6.92 ^{e)}	fish (5% lipid) 308,000 ^{g)} 420,000 ^{g)}	6,200,000 ⁹⁾ 8,300,000 ⁹⁾
(±)-2-endo,3-exo,5-endo,6-exo, 8b,8c,9c,10a,10c-Nonachloro- bornane (Parlar No. 50, TOX 9, T12, Toxicant Ac, B9 - 1679 ¹⁾ , 297 - 303 ¹⁾)		6.23 ^{c)} 6.36 ^{e)}	fish (lipid: 5 %) 85,000 ⁹⁾ 115,000 ⁹⁾ zooplankton (1.48 %) 290,000 ^{h)} long-nose sucker (0.96 %) 100,000 ^{h)} lake whitefish (2.69 %) 680,000 ^{h)} lake trout (8.4 %)	$1,700,000^{9}$ $2,300,000^{9}$ $20,000,000^{h}$ $10,000,000^{h}$ $25,000,000^{h}$
			650 000 ^{h)}	77.000.000 ^{h)}

ORGANOHALOGEN COMPOUNDS Vol. 35 (1998)

Chemical IUPAC name (Parlar No., No. of Andrews and Vetter, No. of Oehme, and other abbreviations)Chemical structurelog K_{OW} Bioconcentration factor (BCF) in fish and other aquatic organism (2) -2,2,5,5,8c,9b,9c,10a,10b- Nonachlorobornane (Parlar No. 62, B9 - 1025 th , 99 - 643 th) CI H 7.72^{ch} fish (lipid: 5 %) 2,630,000 ^{a)} BCF_L^{b} (2) -2,2,5,5,8c,9b,9c,10a,10b- Nonachlorobornane (Parlar No. 62, B9 - 1025 th , 99 - 643 th) CI H 7.72^{ch} fish (lipid: 5 %) 2,630,000 ^{a)} $3,500,000^{a)}$ $53,000,000^{a)}$ (2) -2,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; H CI CI CI $F.IS^{ch}$ fathead minnow 5.28^{al} $6,400^{al}$ $160,000$ $1,2,3,4,7,7$ -Hexachlorobicyclo $(2,2,1]hepta-2,5-diene(HCND)HCICICICI5.55^{ch}5.28^{ch}fathead minnow5.28^{ch}160,0001,2,3,4,5,7,7-Heptachloro-2-norbornene;HCICICICI5.55^{ch}5.28^{ch}fathead minnow1,20^{h}280,0001,2,3,4,5,7,7-Heptachloro-2-norbornene;HGCICICICII,20^{h}280,0001,2,3,4,5,7,7-Heptachloro-2-norbornene;HGCICICII,20^{h}I,20^{h}280,0001,2,3,4,5,7,7-Heptachloro-bicyclo [2,2,1]hept-2-ene(HepCNB)HGGGI,20^{h}I,20^{h}I,20^{h}$	Table T continued.				
$\begin{array}{ c c c c c c } \label{eq:lupAC name} & (Parlar No., No. of Andrews and Vetter, No. of Oehme, and other abbreviations) & (t)-2,2,5,5,8,2,9,9,c,10a,10b- \\ (t)-2,2,1,9,10b- \\ (t)-2,2,1,9,10b- \\ (t)-2,2,1,9,10b- \\ (t)-2,2,1,10e,1-2,2-ne \\ (t)-2,2,10e,1-2$	Chemical	Chemical structure	log Kow	Bioconcentration	actor (BCF) in
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IUPAC name		1	fish and other aqu	atic organism
and Vetter, No. of Oehme, and other abbreviations) G G $BCF_{w}^{(0)}$ $BCF_{L}^{(b)}$ (±)-2,2,5,5,8,9b,9c,10a,10b- Nonachlorobornane (Parlar No. 62, B9 - 1025 ¹), 99 - 643 ⁱ) G H H G	(Parlar No., No. of Andrews				
other abbreviations) BCF _w ^{a)} BCF _L ^{b)} (±)-2,2,5,5,8c,9b,9c,10a,10b- Nonachlorobomane $CI + H + H + H + CI + H + H + CI + H + H + CI + CI$	and Vetter, No. of Oehme, and				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	other abbreviations)		_	BCFw ^{a)}	BCF ^{b)}
Nonachlorobornane (Parlar No. 62, B9 - 1025 ⁰ , 99 - 643 ⁱ) Church H H H H Clurch H P </td <td>(±)-2,2,5,5,8c,9b,9c,10a,10b-</td> <td>CI H</td> <td>7.72^{c)}</td> <td>fish (lipid: 5 %)</td> <td></td>	(±)-2,2,5,5,8c,9b,9c,10a,10b-	CI H	7.72 ^{c)}	fish (lipid: 5 %)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nonachlorobornane	Ct+Cl		2,630,000 ^{g)}	53,000,000 ⁹⁾
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Parlar No. 62, B9 - 1025 ⁰ ,	∣ нн М⊓н о			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	99 - 643 ⁱ⁾)		7.85 ^{e)}	3,500,000 ⁹⁾	71,000,000 ⁹⁾
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
1,2,3,4,7,7-Hexachloro-2,5-norbornadiene; Image: Classical constraints of the classic					
bornadiene; h G $1,2,3,4,7,7$ -Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND) 1,2,3,4,5,7,7-Heptachloro-2- norbornene; 1,2,3,4,5,7,7-Heptachloro- bicyclo [2,2,1]hept-2-ene (HepCNB) H G C					
1,2,3,4,7,7-Hexachlorobicyclo H 2 $6,400^{1}$ $160,000$ 1,2,3,4,5,7,7-Hexachlorobicyclo H Cl Cl Cl $6,400^{1}$ $160,000$ 1,2,3,4,5,7,7-Heptachloro-2- H Cl Cl Cl 5.55^{c1} fathead minnow 1,2,3,4,5,7,7-Heptachloro- H Cl Cl 5.28^{d1} $11,200^{10}$ $280,000$ 1,2,3,4,5,7,7-Heptachloro- H L Cl Cl Cl $11,200^{10}$ $280,000$ 1,2,3,4,5,7,7-Heptachloro- H L Cl Cl Cl $280,000$ 1,2,3,4,5,7,7-Heptachloro- H Cl Cl Cl Cl $280,000$ 1,2,3,4,5,7,7-Heptachloro- Cl Cl Cl Cl Cl Cl Cl Cl H Cl	1.2.3.4.7.7-Hexachloro-2.5-nor-	CI.7_CI	5.15 ^{c)}	fathead minnow	
1,2,3,4,7,7-Hexachlorobicyclo H 5 4 3 CI	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene:		5.15 ^{c)} 5.28 ^{d)}	fathead minnow	
[2,2,1]hepta-2,5-diene H Ci Ci Ci Ci (HCND) 1,2,3,4,5,7,7-Heptachloro-2- Ci Ci 5.55 ^{c)} fathead minnow norbornene; H Ci Ci 5.28 ^{d)} (lipid: 4 %) 1,2,3,4,5,7,7-Heptachloro- H Ci Ci Ci 11,200 ^{f)} 280,000 1,2,3,4,5,7,7-Heptachloro- H Ci Ci Ci Ci Ci 11,200 ^{f)} 280,000 H Ci Ci Ci Ci Ci Ci Ci 11,200 ^{f)} 280,000	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene;		5.15 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6.400 ¹⁾	160.000
(HCND) Cl Cl 1,2,3,4,5,7,7-Heptachloro-2- norbornene; Cl Cl 1,2,3,4,5,7,7-Heptachloro- bicyclo [2,2,1]hept-2-ene (HepCNB) H 5.55 ^{c)} Cl fathead minnow (lipid: 4 %)	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1.2.3.4.7.7-Hexachlorobicvclo		5.15 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 [¶]	160,000
1,2,3,4,5,7,7-Heptachloro-2- CI 7 CI 5.55 ^{c)} fathead minnow norbornene; H CI 7 CI 5.28 ^{d)} fathead minnow 1,2,3,4,5,7,7-Heptachloro- H CI 7 CI 5.28 ^{d)} fathead minnow 1,2,3,4,5,7,7-Heptachloro- H CI 7 CI CI 7 CI 5.28 ^{d)} fathead minnow 1,2,3,4,5,7,7-Heptachloro- H CI 7 CI CI 7 CI 5.28 ^{d)} 11,200 ^{f)} 280,000 H+5 CI 7 CI CI 7 CI CI 7 CI CI 7 CI 11,200 ^{f)} 280,000	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene		5.15 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 ¹	160,000
norbornene; 1,2,3,4,5,7,7-Heptachloro- bicyclo [2,2,1]hept-2-ene (HepCNB)	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND)		5.15 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 ⁹	160,000
1,2,3,4,5,7,7-Heptachloro- bicyclo [2,2,1]hept-2-ene (HepCNB) 280,000	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND) 1,2,3,4,5,7,7-Heptachloro-2-		5.15 ^{c)} 5.28 ^{d)} 5.55 ^{c)}	fathead minnow (lipid: 4 %) 6,400 ^{f)} fathead minnow	160,000
1,2,3,4,5,7,7-Heptachloro- bicyclo [2,2,1]hept-2-ene (HepCNB) CI CI	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND) 1,2,3,4,5,7,7-Heptachloro-2- norbornene;		5.15 ^{c)} 5.28 ^{d)} 5.55 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 ¹ fathead minnow (lipid: 4 %)	160,000
bicyclo [2,2,1]hept-2-ene H Ci	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND) 1,2,3,4,5,7,7-Heptachloro-2- norbornene;	$H = \begin{bmatrix} C_{1} & C_{1} \\ C_{1} & C_{2} \\ H \\ H \\ H \\ C_{1} \\ C_$	5.15 ^{c)} 5.28 ^{d)} 5.55 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 ¹ fathead minnow (lipid: 4 %) 11,200 ¹	160,000
(HepCNB) CI CI	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND) 1,2,3,4,5,7,7-Heptachloro-2- norbornene; 1,2,3,4,5,7,7-Heptachloro-	$H = \begin{bmatrix} C_{1} & C_{1} \\ C_{1} & C_{2} \\ C_{1} \\ H \\ H \\ C_{1} \\ C_{2} \\ C_{1} \\ C_{1} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} $	5.15 ^{c)} 5.28 ^{d)} 5.55 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 ¹ fathead minnow (lipid: 4 %) 11,200 ¹	160,000 280,000
	1,2,3,4,7,7-Hexachloro-2,5-nor- bornadiene; 1,2,3,4,7,7-Hexachlorobicyclo [2,2,1]hepta-2,5-diene (HCND) 1,2,3,4,5,7,7-Heptachloro-2- norbornene; 1,2,3,4,5,7,7-Heptachloro- bicyclo [2,2,1]hept-2-ene	$H = \begin{pmatrix} C_{1} & C_{1} \\ C_{1} & C_{2} \\ H \\ C \\ C$	5.15 ^{c)} 5.28 ^{d)} 5.55 ^{c)} 5.28 ^{d)}	fathead minnow (lipid: 4 %) 6,400 ¹ fathead minnow (lipid: 4 %) 11,200 ¹	160,000 280,000

^{a)} BCF_w; Bioconcentration factor on a wet weight basis.

^{b)} BCF_L; Bioconcentration factor on a lipid basis.

^{c)} The log K_{OW} values were calculated using the LOGKOW Program of Meylan and Howard ^{20,21)}.

^{d)} The log K_{OW} value was measured by Veith et al. by the HPLC method ²²⁾.

- ^{e)} The log K_{ow} value was calculated on the basis of the measured log K_{ow} value of 5.28 for 1,2,3,4,7,7-hexachloro-2,5-norbornadiene.
- [†] BCF_w value in fathead minnows (0.12 g body weight, 4 % lipid) was measured in a 30-day flowthrough test by Spehar et al. ³¹⁾.
- ⁹⁾ BCF_L value predicted from the log K_{OW} value.
- ^{h)} BCF data calculated from the concentration in biota and water of a Canadian fresh water lake measured by K. Kidd and D. Muir ²³⁾.
- ⁱ⁾ Congener No. proposed by Andrews and Vetter ^{30a)}.
- ¹⁾ Congener No. proposed by Oehme ^{30b)}.

In the future it is now possible to measure experimentally the K_{ow} values and also the BCF values of special chlorinated bornane congeners in fish and other aquatic organisms. However, it is necessary to use chlorinated bornane concentrations in the water which are below the water solubility of these very hydrophobic chemicals. Otherwise the BCF values are too low³³⁻³⁶. Furthermore, it is necessary to use the flow-through system and the kinetic approach.

Acknowledgment

We thank Prof. Harun Parlar for good cooperation and many helpful discussions.

References

- 1. Swackhammer, D.L.; Charles, M.J.; Hites, R.A.; Anal. Chem. 1987, 59, 913.
- 2. Jansson, B.; Widequist, U.; Int. J. Environ. Anal. Chem. 1983, 13, 309.
- 3. Fingerling, G.; Hertkorn, N.; Parlar, H.; Environ. Sci. Technol. 1996, 30, 2984.
- 4. Saleh, M.A.; J. Agric. Food Chem. 1983, 31, 748.
- 5. Voldner, E.C.; Li, Y.F.; Sci. Total Environ. 1995, 160/161, 201.
- 6. Saleh, M.A.; Rev. Environ. Contam. Toxicol. 1991, 118, 1-85.
- 7. Rice, C.P.; Samson, P.J.; Noguchi, G.E.; Environ. Sci. Technol. 1986, 20, 1109.
- Parlar, H.; Fingerling, G.; Angerhöfer, D.; Christ, G.; Coelhan, M.; Chapter 23, p. 346-364, in *Molecular Markers in Environmental Geochemistry*, Ed. R.P. Eganhouse, ACS Symposium Series 671, American Chemical Society, Washington, DC, 1997.
- 9. Bidleman, T.F.; Walla, M.D.; Muir, D.; Stern, G.A.; Environ. Toxicol. Chem. 1993, 12, 701.
- 10. Muir, D.C.G.; Boer, J. de; Trends Anal. Chem. 1995, 14, 56.
- 11. Parlar, H.; Nachr. Chem. Tech. Lab. 1991, 39, 26.
- 12. Musial, C.J., Uthe, H.F.; Int. J. Environ. Anal. Chem. 1983, 14, 117.
- 13a. Boer, J. dc; Organohalogen Compounds 1997, 33, 7-12.
- 13b. Coelhan, M.; Fingerling, G.; Christ, G.; Parlar, H.; UWSF Z. Umweltchem. Ökotox. 1998, 10, 109.
- 14. Burhenne, J.; Hainzl, D.; Xu, L.; Vieth, B.; Alder, L.; Parlar, H.; Fresenius J. Anal. Chem. 1993, 346, 779.
- 15. Parlar, H.; Angerhöfer, D.; Coelhan, M.; Kimmel, L.; Organohalogen Compounds 1995, 26, 357.
- 16. Coelhan, M.; Fingerling, G.; Angerhöfer, D.; Parlar, H.; UWSF Z. Umweltchem. Ökotox. 1998, 10, 37.
- 17. Fingerling, G.; Coelhan, M.; Angerhöfer, D.; Parlar, H.; Organohalogen Compounds 1997, 33, 17.
- 18. Vetter, W.; Krock, B.; Luckas, B.; Chromatographia 1997, 44, 65.
- 19. Fingerling, G. (Thesis), University of Kassel, Germany, 1995.
- Meylan, W.M.; Howard, P.H.; LOGKOW Octanol-Water Partition Coefficient Program, Version 1.37. Syracuse Research Corporation, Syracuse, NY 13210, USA, 1995.
- 21. Meylan, W.M.; Howard, P.H.; J. Pharmac. Sci. 1995, 84, 83.
- 22. Veith, G.D.; DeFoe, D.L.; Bergsted, B.V.; J. Fish. Res. Board Can. 1979, 36, 1040.
- 23. Kidd, K.; Muir, D.C.G.; Unpublished results, 1997.
- Stern, G.A.; Muir, D.C.G.; Ford, C.A.; Grift, N.P.; Dewailly, E.; Bidleman, T.F.; Walla, M.D.; Environ. Sci. Technol. 1992, 26, 1838.
- 25. Buser, H.-R.; Müller, M.D.; Environ. Sci. Technol. 1994, 28, 119.
- 26. Luckas, B.; Vetter, W.; Fischer, P.; Heidemann, G.; Plötz, J.; Chemosphere 1990, 21, 13.
- 27. Alder, L.; Beck, H.; Khandker, S.; Karl, H.; Lehmann, J.; Chemosphere 1997, 34, 1389.
- 28. Vetter, W.; Scherer, G.; Schlabach, M.; Luckas, B.; Oehme, M.; Fresenius J. Anal. Chem. 1993, 349, 552.
- 29. Krock, B.; Vetter, W.; Luckas, B.; Scherer, G.; Chemosphere 1996, 33, 1005.
- 30a. Andrews, P.; Vetter, W.; Chemosphere 1995, 31, 3879.
- 30b. Oehme, M.; Kallenborn, R.; Chemosphere 1995, 30, 1739.
- 31. Spehar, R.L.; Veith, G.D.; DeFoe, D.L.; Bergstedt, B.V.; Bull. Environ. Contam. Toxicol. 1979, 21, 576.
- 32. Kuehl, D.W.; Chemosphere 1981, 10, 231.
- 33. Gobas, F.A., Clark, K.E.; Shiu, W.Y.; Mackay, D.; Environ. Toxicol. Chem. 1989, 8, 231.
- 34. Geyer, H.; Muir, D.; Scheunert, I.; Steinberg, C.; Kettrup, A.; Chemosphere 1992, 25, 1257.
- 35. Geyer, H.; Muir, D.; Steinberg, C.; Kettrup, A.; ESPR Environ. Sci. Pollut. Res. 1994, 1, 75.
- 36. Gobas, F.A.P.C.; Schrap, S.M.; Chemosphere 1990, 20, 495.

ORGANOHALOGEN COMPOUNDS

Vol. 35 (1998)