Transport and Fate P4

Thermodynamic and physicochemical properties vis. some ecotoxicological features of polychlorinated naphthalenes

Jerzy Falandysz, Małgorzata Raciniewska, Jerzy Błażejowski*, Iwona Gołaszewska*, Piotr Skurski*

Department of Environmental Chemistry & Ecotoxicology and *Chair of Physical Chemistry, University of Gdańsk, 18 J. Sobieskiego St., PL 80-952 Gdańsk, Poland

Abstract

Geometry, electrostatic potential surfaces and basic thermodynamic and physicochemical characteristics such as standard enthalpies of formation ($\Delta_t H^\circ$), standard free enthalpies of formation ($\Delta_t G^\circ$), entropies (S°), heat capacities (Cp°), energies of LUMO and HOMO and dipole moments have been computed for all 75 congeners of chloronaphthalene (CNs, PCNs). Chloronaphthalene congeners nos.: 5, 9, 10, 12, 27, 41, 45, 47, 65, 66, 70 and 72 have minima at C_{2v} symmetry; nos.: 6, 11, 36, 42, 67 and 71 at C_{2h} symmetry; nos.: 46, 48 and 75 at D_{2h} symmetry and all other congeners at C_a symmetry.

All congeners of CNs are thermodynamically unstable and the absolute values of $\Delta_t H^\circ$ and $\Delta_t G^\circ$ decrease with an increasing degree of chlorination. LUMO energies of CNs are negative which suggest that corresponding anions are stable.

Dipole moments of highly symmetric CNs (C_{2v} and D_{2h}) are negligible while those of less symmetric derivatives reach 1.925 [D]. The physicochemical characteristics such as enthalpies, free enthalpies of formation, HOMO and LUMO energies and dipole moments were correlated with known bioaccumulation factors (BAF) of chloronaphthalene congeners in herring living in Baltic Sea.

Key words: Polychlorinated naphthalenes, thermodynamic and physicochemical properties, relations with ecotoxicological features.

Introduction

Useful physical properties and chemical inertness of polychlorinated naphthalenes (PCNs), similarly to chlorobiphenyls (PCBs) or chloroterphenyls (PCTs), made these substances interesting for electric, energy and others industries (1). Polychlorinated naphthalenes are lipophilic, toxic and relatively persistent substances under environmental conditions. Their main sources are related to various industrial appliances, thermal degradation and chlorination processes (1-2). Among 75 congeners of chloronaphthalenes only a few are relatively resistant to biodegradation and these biomagnify in animals occupying higher position in marine food web. Many of them are also bioaccumulated in lower food web organisms (3-6).

ORGANOHALOGEN COMPOUNDS Vol. 36 (1998) Only limited data concerning the biological activity of different chloronaphthalene congeners (7-9) are available. Also relations between structure, physicochemical and other features and persistency or pliancy to metabolism were only occasionally investigated.

Nevertheless, we attempted to relate them to theoretically predicted properties of PCNs. For this purpose, we optimized geometry of molecules and calculated electrostatic potential surfaces and values of selected thermodynamic and physicochemical properties using the semiempirical methods. The obtained data were correlated with available ecotoxicological characteristics of individual isomers or congeners of chloronaphthalene.

Materials and Methods

Geometry optimizations were carried out on the level of the semiempirical PM3 method (10) using the EF technique (11) implemented in the MOPAC 93 program package (12). Values of thermodynamic and physicochemical quantities were extracted directly from MOPAC 93 data files (13). Electrostatic potential surfaces were drown using the SPARTAN v. 4.0 program (14).

The values of bioaccumulation factor (BAF) of PCNs in herring were taken from different papers (4, 5).

Results and Discussion

ł

The constitution symmetry and basic thermodynamic and physicochemical properties such as standard enthalpies of formation ($\Delta_t H^\circ$), standard free enthalpies of formation ($\Delta_t G^\circ$), entropies (S°), heat capacities (Cp°), energies of HOMO and LUMO and dipole moments of chloronaphtalene congeners are summarized in Table 1. The surfaces of an electrostatic potential surrounding four selected pentachloronaphthalenes, which are relatively persistent under environmental conditions and do not have two vicinal (adjacent) carbon atoms unsubstituted with chlorine (4, 16) are shown in Figures 1 and 2.

Congeners nos.: 5, 9, 10, 12, 27, 41, 45, 47, 65, 66, 70 and 72 have one C_2 rotation axis (rotation by 180°) and two vertical planes (C_{2v} point group); nos.: 6, 11, 36, 42, 67 and 71 - one C_2 rotation axis and one horizontal plane (C_{2h} point group); nos.: 46, 48 and 75 - three C_2 rotation axis and one horizontal plane (D_{2h} point group), while others - one plane (C_s point group).

The standard enthalpy of formation ($\Delta_t H^\circ$) equals the amount of heat exchanged upon the formation of a compound from stable forms of elements under pressure of 1 atm. and temperature of 298 K. Therefore, the more negative value of the enthalpy of formation the more thermodynamically stable the molecule is. All congeners of chloronaphthalene are thermodynamically unstable, although the absolute values of $\Delta_t H^\circ$ and $\Delta_f G^\circ$ decrease with an increasing degree of chlorination (Table 1). It means that less chlorinated chloronaphtalenes should easier decompose than more chlorinated.

Quantum mechanical calculations provide also values of energy of the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and dipole moments. The energies HOMO of CNs differ only slightly and changes of these do not correlate with a degree of chlorination. The negative energy of HOMO and LUMO approximate according to the Koopman's theory. The first ionization potential and electron affinity of molecules respectively. The dipole moments are more dependent on the constituation and less on degree of chlorination of molesules. Hence, the congeners of chloronaphthalene with chlorine atoms distributed symmetrically exhibit minimal values of

472

dipole moments and those with chlorine atoms distributed non-symmetrically - the highest values of this quantity. .More chlorinated CN congeners will easier attract an electron than less chlorinated ones. However, all chlorinated naphthalenes should form termodynamically stable negative ions.

The electrostatic potential surrounding molecules reflects ability to interact with nucleophilic or electrophilic reagents. Blue colour indictes positive and red negative values of the electrostatic potential (Figs. 1 and 2)

The deeper the colour is, the more distinctive is the ability to chemical interactions. The regions of highly positive potential are susceptible to nucleophilic substitution and negative potential - to electrophilic substitution. As these reactions should indicate chemical degradation of PNs, the thorough analysis of electrostatic potential around molecules enables preliminare insight into reactivity, possibilities of interaction and degradation the their derivatives.

Congeners of chloronaphtanene having two vivinal (adjacent) carbon atoms unsubstituted with chlorine (NVC - CIPCN) such as nos.: 42, 52, 58, 60, 61, 64, 67, 68, 69, 71, 72, 73, 74 and 75 that are considered the most persistent, have lower values of stanard enthalpy of formation, standard free enthalpy and dipole moments, and higher values of entropy and heat capacity on the average, when compared to congeners with other patterns of substitution with chlorine.

The environmental persistency and behavior of organohalogenated pollutants, especially when related to the abiotic matrices, are highly determined by their various physicochemical features like low hydrophility and high lipophility, low vapor pressure, and a high log $K_{\alpha'w}$ or log $K_{\alpha'x}$ values. Regressive analysis indicates that bioaccumulation factors (BAF) of PCNs in herring feeding on plankton positively correlate with some physicochemical and thermodynamical properties of these substances such as standard free enthalpis, energies of LUMO and HOMO and dipole moments.

		Point	Standard	Standard		1	Energy	Energy	
ł	1	group	enthalpy	free	1	Heat	of	of	Dipole
!	!	sym-	of	conthalpy	1	capacity ⁷	LUMO	HOMO	moment
No	Structure	metry	formation*	i of formation	Entropy/		(eV)	(eV)	(D)
1	1-MoCN	Cs	-34.5	34.1	90.0	34.8	-0.620	-8.803	0.9020
2	2-MoCN	Cs	33.8	33.4	86.6	32.9	-0.605	-8.897	1.0653
¦ 3	1,2-DiCN	Cs	28.9	28.5	93.0	36.5	-0.779	-8.816	1.4528
4	1,3-DiCN	Cs	28.0	27.6	93.2	36.6	-0.802	-8.878	1.1443
5	1,4-DiCN	C _{2v}	28.7	28.3	93.2	36.5	-0.826	-8.770	0.3703
6	1,5-DiCN	C _{2h}	28.7	28.3	92.6	36.5	-0.816	-8.803	0.0045
7	1,6-DiCN	Cs	27.9	27.5	93.1	36.5	-0.801	-8.890	0.8288
8	1,7-DiCN	Cs	27.9	27.5	93.1	36.5	-0.799	-8.861	1.4809
9	1,8-DiCN	C _{2v}	31.3	30.9	92.1	36.5	-0.809	-8.719	1.5901
10	2,3-DiCN	C _{2v}	28.3	27.9	93.3	36.6	-0.757	-8.969	1.6016
11	2,6-DiCN	C _{2h}	27.1	26.7	92.9	36.6	-0.791	-8.910	0.0002
12	2,7-DiCN	C~	27.2	26.7	93.4	36.6	-0.784	-9.003	0.9071
13	1,2,3-TrCN	Cs	23.5	23.1	96.1	38.3	-0.922	-8.888	1.6744
14	1,2,4-TrCN	Cs	23.3	22.8	99.6	40.2	-0.971	-8.796	1,1003
15	1,2,5-TrCN	Cs	23.1	22.7	95.6	38.2	-0.961	-8.835	0.7581
16	1,2,6-TrCN	Cs	22.3	21.9	95.9	38.3	-0.951	-8.868	0.6126
1 17	1,2,7-TrCN	Cs	22.3	21.9	99.6	40.3	-0.943	-8.901	1.4829
18	1,2,8-TrCN	Cs	25.7	25.3	94.9	38.2	-0.954	-8,740	1.9075
19	1,3,5-TrCN	Cs	22.3	21.9	99.6	40.3	-0.982	-8.865	0.9654
20	1,3,6-TrCN	Cs	21.5	21.1	96.5	38.4	-0.969	-8.982	0.1835
21	1,3,7-TrCN	Cs	21.5	21.1	99.7	40.3	-0.971	-8.900	0,7930
22	1,3,8-TrCN	Cs	25.0	24.5	98.9	40.2	-0.977	-8.810	1.3579
23	1,4,5-TrCN	Cs	25.8	25.3	95.0	38.2	-1.002	-8.872	0.7249
24	1,4,6-TrCN	Ċs	22.2	21.8	96.3	38.3	-0.990	-8.841	0,6647
25	1,6,7-TrCN	Cs	22.5	22.1	99.5	40.3	-0.939	-8.934	1.5452
26	2,3,6-TrCN	Cs	21.8	21.4	96.1	38.3	-0.929	-9.005	0.7789
27	1,2,3,4-TeCN	C _{2v}	18.8	18,4	102.3	42.0	-1.082	-8.816	1.5226
28	1,2,3,5-TeCN	Cs	17.8	17.4	102.2	42.0	-1.091	-8.886	1.3222
29	1,2,3,6-TeCN	Cs	17.1	16.6	99.1	40.0	-1.083	-8.953	0.6505
30	1,2,3,7-TeCN	Cs	17.0	16.6	102.4	42.0	-1.079	-8.939	1.1754
31	1,2,3,8-TeCN	Cs	20.5	20.1	101.5	42.0	-1.086	-8.813	1.8125
32	1,2,4,5-TeCN	Cs	20.4	20.0	101.3	42.0	-1.134	-8.759	0.9392
33	1,2,4,6-TeCN	Cs	16.8	16.4	102.4	42.0	-1.128	-8.846	0.2460
34	1,2,4,7-TeCN	Cs	16.8	16.4	102.5	42.0	-1.123	-8.880	0.6795
35	1,2,4,8-TeCN	Cs	20.4	20.0	101.3	41.9	-1.134	-8.741	1.2477
¦ 36	1,2,5,6-TeCN	C _{2h}	17.6	17.2	102.1	42.0	-1.099	-8.847	0.0016
37	1,2,5,7-TeCN	Cs	16.8	16.4	102.3	42.0	-1.114	-8.912	0.6734
38	1,2,5,8-TeCN	Cs	20.3	19.9	97.9	30.0	-1.134	-8.748	1.0359
39	1,2,6,7-TeCN	Cs	17.0	16.6	102.0	42.0	-1.077	-8.938	1.1703
40	1,2,6,8-TeCN	Cs	19.4	19.0	101.4	42.0	-1.114	-8.807	1.2450
41	1,2,7,8-TeCN	C _{2v}	20.2	19.8	101.2	41.9	-1.086	-8.780	1.9245
42 ¦	1,3,5,7-TeCN	С _{2ь}	16.0	15.6	106.1	44.0	-1.139	-8.899	0.0017
¦ 43 ¦	1,3,5,8-TeCN	Cs	19.5	19.1	101.7	42.0	-1.154	-8.790	0.6856
¦ 44 ¦	1,3,6,7-TeCN	Cs	16.2	15.8	102.5	42.1	-1.100	-8.985	0.5550
45	1,3,6,8-TeCN	C _{2v}	18.7	18.3	102.0	42.0	-1.131	-8.907	0.5662
46	1,4,5,8-TeCN	D _{2b}	23.6	23.2	97.0	39.9	-1.180	-8.653	0.0035

Table 1. Symmetry and physicochemical properties of PCNs

46 1,4,5,8-TeCN Table 1, cont'd

Table 1, continued.

		Point group sym-	Standard enthalpy of	Stændard fræ enthalpy	Entropy†	Heat capacity [†]	Energy of LUMO	Energy of HOMO	Dipole moment (D)
No	Structure	metry	formation	of formation		1	(eV)	(eV)	
47	1,4,6,7-TeCN	C _{2v}	16.9	16.5	102.5	42.003	-1.118	-8.895	1.0960
48	2,3,6,7-TeCN	D _{2b}	16.5	16.0	102.3	42.041	-1.062	-9.076	0.0018
49	1,2,3,4,5-PeCN	Cs	16.0	15.6	104.0	43.650	-1.236	-8.770	1.4222
¦ 50	1,2,3,4,6-PeCN	Cs	12.4	12.0	105.2	43.750	-1.229	-8.879	0.7429
51	1,2,3,5,6-PeCN	Cs	12.4	12.0	104.9	43.733	-1.219	-8.911	0.7203
52	1,2,3,5,7-PeCN	Cs	11.6	11.2	108.7	45.745	-1.239	-8.938	0.4951
53	1,2,3,5,8-PeCN	Cs	15.1	14.7	104.2	43.671	-1.253	-8.805	1.1565
54	1.2,3,6,7-PeCN	Cs	11.8	11.4	105.1	43.776	-1.205	-9.000	0.5393
55	1,2,3,6.8-PeCN	Cs	14.3	13.8	104.5	43.742	-1.235	-8.885	0.8862
56	1,2,3,7,8-PeCN	Cs	15.1	14.7	118.1	43.677	-1.213	-8.832	1.5390
57	1,2,4,5,6-PeCN	Cs	15.0	14.5	104.0	43.661	-1.250	-8.777	0.6428
58	1,2,4,5,7-PeCN	Cs	14.2	13.8	107.9	45.670	-1.276	-8.839	0.0160
59	1,2,4,5,8-PeCN	Cs	18.4	17.9	103.2	43.595	-1.301	-8.692	0.6706
60	1,2,4,6,7-PeCN	Cs	11.6	11.2	105.1	43.767	-1.244	-8.910	0.4712
61	1,2,4,6,8-PeCN	Cs	14.2	13.8	107.8	45.665	-1.280	-8.798	0.4573
62	1.2,4,7,8-PeCN	Cs	14.9	14.5	104.0	43.657	-1.255	-8.785	1.1045
63	1,2,3,4,5,6-HxCN	Cs	10.6	10.2	106.6	45.394	-1.353	-8.801	1.0113
64	1,2,3.4,5,7-HxCN	Cs	9.8	9.4	110.5	47.410	-1.373	-8.835	0.4879
65	1,2,3,4,5,8-HxCN	C _{2v}	14.0	13.6	105.8	45.323	-1.393	-8.714	1.0238
66	1,2,3,4,6,7-HxCN	C _{2v}	7.2	6.8	107.8	45.510	-1.343	-8.927	0.0324
67	1,2,3,5,6,7-HxCN	C _{2b}	7.2	6.8	111.2	47.462	-1.336	-8.957	0.0010
68	1,2,3,5,6,8-HxCN	Cs	9,8	9.4	110.3	47.386	-1.372	-8.839	0.4558
69	1,2,3,5,7,8-HxCN	Cs	9.8	9.4	110.2	47.380	-1.371	-8.825	0.7648
¦ 70	1,2,3,6,7,8-HxCN	C _{2v}	9.8	9.4	106.9	45.455	-1.331	-8.893	0.9535
71	1,2,4,5,6,8-HxCN	C _{2h}	13.1	12.7	109.2	47.314	-1.416	-8.720	0.0020
¦ 72	1,2,4,5,7,8-HxCN	C _{2v}	13.1	12.7	109.3	47.313	-1.412	-8.736	0.4416
¦ 73	1,2,3,4,5,6,7-HxCN	Cs	5.5	5.1	112.8	49.113	-1.461	-8.850	0.4125
74	1,2,3,4,5,6,8-HxCN	Cs	8.8	8.4	111.8	49.043	-1.501	-8.749	0.4446
75	1,2,3,4,5,6,7,8-OCN	D75	4,5	4.1	114.2	50.775	-1.583	-8.769	0.0002

*(kcal/mol); ^{*t*}(cal/(mol K))

1,2,3,5,7-PeCN (No. 52)

1,2,4,5,7-PeCN (No. 58)

ORGANOHALOGEN COMPOUNDS Vol. 36 (1998)

1,2,4,6,7-PeCN (No. 60)

1,2,4,6,8-PeCN (No. 61)

Figure 2. The electrostatic potential surfaces of CNs nos. 60 and 61.

Acknowledgements

This study was in part supported by the Polish State Committee of Scientific Research (KBN) under grant DS/8000-40-0026-8.

References

- 1. Falandysz J; Environ. Pollut. 1998, in press.
- 2. Jakobsson E. (*Thesis*), Synthesis and analysis of chlorinated naphthalenes. Biological and environmental implications, Stockholm University, **1994**; ISBN 91 7153 241 2.
- 3. Falandysz J, Strandberg B, Strandberg L, Bergqvist P-A, Rappe C; Sci. Total Environ. 1997, 204, 97.
- 4. Falandysz J; Organohalogen Compd. 1997, 32, 374.
- 5. Falandysz J and Rappe C; Environ. Sci. Technol. 1996, 30, 3362.
- 6. Falandysz J, Strandberg L, Bergqvist P-A, Strandberg B, Rappe C; Sci. Total Environ. 1997, 203, 93.
- Campbell MA, Bandiera S, Robertson L, Parkinson A, Safe S; *Toxicology*, 1983, 26, 193.
- 8. Hanberg A, Waern F, Asplund L, Haglund E, Safe S; Chemosphere, 1990, 20, 1161.
- 9. Engwall M, Brundström B, Jakobsson E; Arch. Toxicol. 1994, 68, 37.
- 10 Stewart JJP; J. Comput. Chem. 1989, 10, 209; 221.
- 11. Baker J; J. Comput. Chem. 1986, 7, 385.
- 12. Stewart JJP; MOPAC 93. Copyright Fujitsu, Tokyo, 1993.
- 13. Stewart JJP; J. Comput.-Aided. Mol. Design. 1990, 4, 1.
- 14 Wave function, Inc., 18401 Von Karman, Suite 370, Irvine, CA 92715 (USA).
- 15. Falandysz J, Strandberg L, Bergqvist P-A, Kulp SE, Strandberg B, Rappe C; Environ. Sci. Technol. 1997, 30, 3266.

476

ORGANOHALOGEN COMPOUNDS Vol. 36 (1998)