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Introduction 

The experimental study of dioxin emissions from incineration facilities usually yields a data 
set containing the measurements of dioxins and other process parameters. In analyzing 
the experimental data the objectives are usually: (1) to identify the process parameters 
affecting dioxin emissions, (2) to describe the general trends about how the dioxins are 
influenced by these parameters, and (3) to obtain the possible quantitative correlations. 
Statistical techniques can serve as useful tools in this data analysis process. In the past 
the regression method has been utilized in a number of studies on dioxin emissions. In the 
Environment Canada study the data are analyzed using the Pearson correlation 
coefficients,'"^* and later by two-parameter models^' and also by multiple linear models.̂ -̂ ^ 
Recently, a model involving the interactive, square and logarithm transformation terms of 
process parameters has been used to correlate the dioxin emission data from a furnace 
reactor.^' In this paper we use the regression method to analyze one dioxin data set for 
large-scale, grate-type incinerators and construct the various single-variable/multi-variable, 
linear/quadratic models for this data set, and then compare these models and discuss the 
adequacy or inadequacy, application and limitation of the method. 

Multiple Regression Analysis 

Multiple regression analysis is the calculation and testing of empirical relationships or 
regression equations between a response variable and some independent variables from 
an existing data set. The calculation of regression equations is usually based on the "least 
square" principle. Statistical parameters measuring the fitting of regression equations to a 
data set are the square of the multiple correlation coefficient R^and the F ratio. The R̂  
ranges from 0 to 1. A higher value indicates better correlations. If there is only one 
independent variable, then the multiple correlation coefficient is simplified to the Pearson 
correlation coefficient, which is indicated customarily by r̂ . The F ratio is used to compare 
with the critical F value for different size of data set. When the F ratio is larger than the 
critical F value, the regression equation is statistically significant. Details of computation 
and interpretation of multiple regression analysis can be found in some statistics 
handbooks.^"^' 

Descriptive Statistics of the Dioxin Data Set 

The dioxin data set analyzed in this paper consists of 47 measurements at 11 large-scale, 
grate-type municipal waste incinerators performed in a Dutch study programme.^' The flue 
gas composition and dioxin data are chosen from the original report and examined for their 
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possible correlationships. 
table 1. 

These parameters and their descriptive statistics are shown in 

Table 1. Descriptive statistics of the dioxin data set (number of measurements n=47) 

0 , 
CO 
NO, 
SOj 
HCI 
F.A. 
Dioxin 
Note: F.A.: 
others are 

=fly ash. 

Min. 

8.3 
5 
227 
38 
0.3 
0.6 
1.2 

Max. 

17.1 
3199 
497 
468 
1065 
156 
123 

The unit of Oj is vol%. 
inmg/Nm^at i r /oOj, dry basis. 

The Single-variable Correlations 

Arithmetic 
mean m| 
11.9 
295.4 
352.4 
171.6 
387.8 
45.3 
31.7 

dioxin is in ng-

Standard 
deviation s. 
1.84 
682.5 
69.9 
94.6 
336.3 
39.6 
35.5 

•TE/Nm^at i r /oOj, dry basis, all 

The linear correlations between dioxin and other parameters pairwisely are of the form: 

Dioxin = a+ bX|±e (1) 

where, Xjare O2, CO, NO^, SO2, HCI and F.A., respectively, a and b are regression 
coefficients, e is standard error, dioxin and Xj have the same units as in table 1. The 
equation coefficients estimated from regression analysis are listed in table 2. 

Table 2, The single-variable linear correlations 

r2 
O2 0.116* 
CO 0.004 
NO, 0.024 
SO2 0.07 
HCI 0.48* 
F.A. 0.205* 
Note: The significant 
Fo.95(1.45)=4.06. 

a 
-46.6 
32.7 
59.6 
14.6 
3.33 
13.3 

statistical 

b 
6.58 
-0.003 
-0.079 
0.099 
0.073 
0.407 

parameters are 

e 
33.8 
35.9 
35.5 
34.7 
25.9 
32 

indicated by 

F 
5.9* 
0.18 
1.1 
3.4 
41.4* 
11.6* 

*. The critical F value is 

From table 2 it can be seen that Oj, HCI and F.A. are significant variables as their F values 
are higher than the critical F value. Their r̂  indicate that about 48%, 20.5% and 11.6% of 
the variation of dioxins can be explained by the variations of HCI, F.A. and O2, respectively. 
The positive signs of their regression coefficients b indicate that they are all positively 
correlated with dioxins. 

The quadratic correlations between dioxin and other parameters pairwisely are: 

Dioxin = a -I- b X|' + c (Xi')̂  ± e (2) 

where, Xj': standardized variables, X|'=(Xi-mi)/Si, m, and S| are listed in table 1. Standardized 
variables are customarily utilized in regression analysis involving many terms. The 
equation coefficients are given in table 3. 

\ 
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Table 3. The single-variable quadratic correlations 

02-
CO' 
NO; 
802' 
HCI" 
F.A." 

R2 
0.242* 
0.004 
0.027 
0.188* 
0.552* 
0.243* 

a 
39.3 
32.5 
30 
40.2 
21.2 
38.4 

b 
17.7 
0.16 
-5.82 
22.5 
21.7 
24.6 

c 
-7.8 
-0.77 
1.73 
-8.67 
10.7 
-6.86 

e 
31.6 
36.3 
35.8 
32.8 
24,3 
31,6 

11.7* 
0 
1.19 
10* 
33.5* 
11* 

7.3* 
0.2 
0.14 
6.37* 
7.13* 
2.19 

F 
7.04* 
0.1 
0.62 
5.08* 
27.1* 
7.05* 

Note: F̂  and F̂  are the F testing of linear and quadratic terms. F is the testing of the overall 
correlations. The critical values are Fo95(1,44)=4.06 for Fb and F ,̂ Fo.95(2,44)=3.21 for F. 

From table 3 it can be seen that when the quadratic effects are considered, Oj, SO2, HCI 
and F,A. are significant variables and their R̂  indicate that about 55.2%, 24.3%, 24.2% and 
18.8% of the variation of dioxins can be explained by the variations of HCI, F.A., O2 and 
SO2, respectively. The correlation between Oj* and dioxin is: dioxin=39.3+17.7 Og'-
7.8(02')^. It gives a maximum dioxin point at ©2'= 17.7/2X7.8=1.13. Noticing from table 1 
thaf for variable x,, most of the original data points fall within the interval: (mi-Si, m,+Si), and 
X|' is within (-1,1), so that the results of regression analysis is reliable only within this 
interval. Therefore, a maximum dioxin point at 02*=1.13 means that within the range of 
investigation, dioxins increase with the increase of Og and because of the quadratic effect, 
the increase is more rapid at low Oj than at high Oj. Similar analyses of other correlations 
in table 3 show that dioxins increase with the increase of SOg and HCI quadratically, but 
with F.A, almost linearly. 

The Multiple Correlations 

The multiple linear correlation between dioxin and other parameters is of the form: 

Dioxin = b,, + 1 biX|' ± e (3) 

^ 

From regression analysis of the data set the correlation is estimated as: 

Dioxin=31.7-1-3.7 Oz'-G.t CO"-3.8 NO;-i-14.9 S02"+22.9 HCr-0.73 F.A." (4) 

For this correlation the R̂  is 0.611, e is 23.8, the overall F is 10.5, the critical F is 
Fo.95(6,40)=2.34. 

The multiple quadratic correlation between dioxin and other parameters with interactive 
terms is of the form: 

Dioxin = bo -I- I biXj" -1-1 b„(x^)^ -t- I bijXi'xj' ± e (5) 

The resulting correlation from regression analysis of the data set is: 

Dioxin= 35.7 -1-IO.I 02' -14.7 (O2T -1-11.9 CO* -10.6 NO;-i-7.3 (NO/)2-i-16.2 SO2* -7.6 
(SOj")^ +20.9 HCI" -6.3 F.A." -1-7.9 (F.A.")^ -1-10.7 O2" HCI* +11.2 SO2* HCI* 

(6) 

For this correlation the R̂  is 0.891, e is 13.7, the overall F is 23.1, the critical F is 
Fo95(12,34)=2.05. All terms in equation (6) are signiticant in F testing. Other quadratic 
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terms not present in the equation as well as two interactive terms O2' F.A." and HCI" F.A.* 
are insignificant. The interactive terms involving CO" and NO/ have not been included in 
the regression analysis. 

From equation (6) the influence of flue gas composition on dioxins can be identified as 
follows: (1) O2: a maximum point exists at O2'=(10.1-i-10.7 HCI*)/ 2X14.7. When HCI" is 1, 
O2' is 0.7, but when HCI* is - 1 , O2' is 0 and Oj is 12%. Thus very approximately, the 
influence of O2 on dioxins is correlated with HCI, at high HCI dioxins increase with the 
increase of Oj, at low HCI a maximum dioxin point is found at 12%02; (2) CO: Dioxins are 
positively linearly correlated with CO; (3) NO,: Dioxins decrease with the increase of NO,; 
(4) SOg: The effect of SO2 on dioxins is correlated with HCI and is similar to O2; (5) HCI: The 
effect of HCI is correlated with O2 and SOg. When both O2 and SOj are at low level, HCI 
has little effect on dioxins, but when both O2 and SO2 are at high level, dioxins increase 
with the increase of HCI; (6) F.A.: A minimum point is found at F.A.*=0.4 or F.A.=60 mg/Nm^. 

Discussions 

The correlations between flue gas composition and dioxins obtained above using 
regression method are generally in agreement with the understanding of the formation 
mechanisms of dioxins. The entering of such terms as Oj, HCI, F.A., SO2 into the model is 
justified by the possibility of their participating in dioxin formation reactions. CO is an 
indicator 6f incomplete combustion and may also enter the model. The role of NO, is less 
clear. But in previous studies NO, is also found to be a significant parameter^'. The 
positive correlation between O2 and dioxins can be explained by de novo synthesis of 
dioxins which is shown to be increased by a higher flue gas Og concentration in laboratory 
experiments. This observation suggests that in order to reduce dioxin formation too high a 
flue gas O, level should be avoided and the optimal O2 level may range from 6% to 9% 
corresponding to an excess air ratio of less than 100%. In the following several questions 
regarding the data analysis method are discussed: 

(1) The Pearson correlation coefficient: The r̂  listed in table 2 can be calculated without 
actually doing the regression analysis and are commonly used as convenient indication of 
pairwise correlations. The underiying assumption of the r̂  is the first order assumption over 
the range of investigation as the r̂  is essentially a measure of the total variance explained 
by a linear correlation between two parameters. If the r̂  is higher than 0.25, it means 
strong linear correlation. If the r̂  is less than 0.25, it means no correlation at all or strong 
quadratic correlation. For the present wide range of parameters studied as shown in table 
1 the first order assumption may not apply as Og and SO2 have significant quadratic effects 
as shown in table 3. Using the Pearson correlation coefficient alone cannot detect the 
quadratic effects and thus may sometimes lead to under-estimation of the influence ot 
some variables. 

(2) Single-variable or multi-variable analysis? The single-variable correlations given in 
table 2 and 3 can also be obtained by plotting the data in an X-Y coordinate and doing a 
curve-fitting. The advantage of regression method is that statistical parameters can be 
calculated and the significance of regression equations be judged objectively. The 
problem of such a single-variable analysis is, however, that when studying the effect of one 
variable in an X-Y coordinate, other variables are not held constant and the observations 
regarding this variable may be offset by other changing variables as dioxins are essentially 
influenced by many process variables simultaneously. Therefore, single-variable analysis 
may not produce consistent and reliable results in some cases. Good painwise correlations 

ORGANOHALOGEN COMPOUNDS 
458 Vol.23 (1995) 



EMCO 

in table 2 and 3 indicate possible strong effects, but a lack of correlation may be due to the 
effects of other changing variables and hence no simple conclusions can be drawn. 

The multiple regression equations (3) to (6) provide correlations of the influence of several 
variables simultaneously. The computation of these equations is based on the "least 
square" method and is in principle similar to fitting a straight line to some data points in a 
two-dimensional coordinate or fitting a plane to some data points in a three-dimensional 
space and may be regarded as the extension to an n-dimensional space (n>3). 
Comparing the results from single-variable and multiple correlations it can be seen that 
more elaborate descriptions of the relationships between dioxins and other parameters are 
given in fhe multiple correlations. 

(3) Linear or quadratic model? In the Environment Canada study^', multiple linear model of 
the form of equation (3) has been used to correlate the dioxin data and the R̂  of the 
correlation reached 0.89. The good linear correlation suggests that within the range of 
study the system can be approximated well by a first-order assumption. But in the present 
study the multiple linear model of equation (4) has an R^of 0.611 only. This poor 
correlation indicates that first-order assumption does not hold. When the model is 
extended to include quadratic and interactive terms in equation (5) and (6), the R̂  reaches 
0.891. This suggests that quadratic and interactive effects are important and multiple 
quadratic model of the form of equation (5) is necessary for good representation of the data 
set, A requirement for computation of regression equations (3) and (5) is that the number of 
experimental measurements should be at least larger than the number of terms in the 
regression equations. The computation of multiple quadratic model needs therefore much 
more experimental runs than multiple linear model. 

(4) Higher order terms? Equation (6) has an R̂  of 0.891, which is sufficient for general 
trends analysis, but may not be sufficient for quantitative prediction purpose. If higher order 
terms and other transformation terms are included, the R̂  can be increased to more than 
0.95 and model predictions are further improved. A model of this type is given by Gullett 
et.al.^' However, the mechanistic implications of these models are not very clear and no 
reliable computational algorithm for a search of suitable transformation terms is available. 

(5) Model applicability: The application of empirical models based on regression analysis 
of some experimental data is limited to the specific system and conditions from which the 
experimental data are obtained. For incinerators of similar design the models may be 
similar qualitatively. For different types of incinerator the models may differ substantially 
because of the different combustion characteristics and thus need to be developed for 
individual cases. 

Conclusions 

Dioxin emissions from incineration facilities are influenced by a variety of process 
parameters simultaneously, and quadratic and interactive effects are important, so that 
multivariate statistical method is necessary for analyzing the experimental data to obtain 
meaningful correlations. The analysis of dioxin measurement data using various 
regression methods in this paper demonstrates that: (1) Some methods widely used in 
initial data exploration such as the calculation of the Pearson correlation coefficient and 
plotting and studying the data in an X-Y coordinate may not be sufficient for studying the 
complex relationship between dioxins and other process parameters; (2) Multiple linear 
model is adequate for correlating dioxin emission data only if the system can be 
approximated well by a first-order assumption within the range of operating condifions 
studied; (3) Multiple quadratic model with interactive terms can provide good correlations of 
dioxin emission data with reasonable model complexity, and may be used as a statistical 
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tool in general trends analysis, developing dioxin prediction and control models and 
optimizing the combustion conditions to minimize dioxin emissions. 
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