Determination of Toxaphene

Vetter W., Luckas, B

University Jena, Institute of Food and Environment Dornburger Str. 24, 6900 Jena, Germany

Toxaphene was one of the most heavily used insecticides from the fourties to the seventies. Technical toxaphene is a complex mixture of polychlorinated compounds with an average composition of $C_{10}H_{10}Cl_8$, corresponding to an average molecular weight of 414¹.

The number of compounds that have been determined so far in technical toxaphene mixtures by GC/ECD and GC/MS varies between 175² and 670³, and most of those compounds are polychlorinated 1.7.7-trimethyl-bicyclo[2.2.1]heptanes (bornanes).

formula	m.w.	possible isomers	optically inactive	enantiomeric pairs
C10H18*	138	1	1	-
C10H17CI1	172	12	2	5
C10H16Cl2	206	69	7	31
C ₁₀ H ₁₅ Cl ₃	240	256	12	122
$C_{10}H_{14}Cl_{4}$	274	696	22	337
C ₁₀ H ₁₃ Cl ₅	308	1488	32	728
$C_{10}H_{12}CI_{6}$	342	2608	42	1283
$C_{10}H_{11}CI_7$	376	3840	52	1894
C10H10Cl8	410	4818	56	2381
C ₁₀ H ₉ Cl ₉	444	5192	60	2566
C ₁₀ H ₈ Cl ₁₀	478	4818	56	2381
C10H7CI11	512	3840	52	1894
C ₁₀ H ₆ Cl ₁₂	546	2608	42	1283
C ₁₀ H ₅ Cl ₁₃	580	1488	32	728
C10H4CI14	614	696	22	337
C ₁₀ H ₃ Cl ₁₅	648	256	12	122
$C_{10}H_2CI_{16}$	682	69	7	31
C10H1CI17	716	12	2	5
C ₁₀ Cl ₁₈	750	1	1	-
toxaphene congeners: $\Sigma = 32768^{\circ} 512^{\circ}$ * includes the unchlorinated bornane				16128
Table 1 formula, m.w., isomeric numbers, and chirality of polychlorinated bornanes in every degree of chlorination				

Investigations using GC/FT-IR have led to the conclusion that higher contents of polychlorinated bornenes are not present in technical mixtures⁴. Recently, the theoretical number of polychlorinated bornanes has been determined to be 32767⁵. Table 1 shows the distribution of isomers for all degrees of chlorination. Table 1 also distinguishes between optically active and inactive polychloro bornanes.

Residues of toxaphene have been measured in the marine food chain of the Antarctic^{6,7} as well as in the Arctic^{8,9}, confirming that toxaphene is a major organochlorine pollutant. Atmospheric transport has been shown to be responsible for the global distribution¹⁰. Toxaphene residues show a changed composition compared to the technical toxaphene⁶. In particular two compounds of the technical mixture, TOX8 and TOX9, are concentrated in higher organisms^{7,11,12}. Recently, these two compounds were isolated from sea mammal samples^{13,14}.

We have used a wide range of techniques such as GC/ECD, GC/FID, multidimensional GC, GC/MS, MS/MS, ¹H-NMR combined with theoretical studies of the theoretical composition of technical toxaphene and its stereochemistry in order to address the following points:

The need for a uniform nomenclature for polychlorinated bornanes

How many compounds must we expect in technial toxaphene?

What is the stereochemistry of polychlorinated bornanes?

Structure elucidation of isolated polychlorinated bornanes

Confirming of the enantiomeric form by NMR

Confirming of the bornane skeleton for TOX8 and TOX9 by MS/MS

Which toxaphene compounds are stable?

Problems in quantitation of toxaphene residues by NCI/MS

Quantitative determination of toxaphene in sea mammals

References

1 Saleh MA. Toxaphene: chemistry, biochemistry, toxicity and environmental fate. *Rev Environ Cont Toxicol* 1991;118:1-85

2 Casida JE, Holmstead RL, Khalifa S, Knox JR, Ohsawa T, Palmer KJ, Wong RY. Toxaphene insecticide: a complex biodegradable mixture. *Science* 1974;183:520-1

3 Jansson B, Wideqvist U. Analysis of toxaphene (PCC) and chlordane in biological samples by NCI mass spectrometry. *Intern J Environ Anal Chem* 1983;13:309-21

4 Parlar H. Chlorierte Bornan-Derivate - eine neue Klasse Umwelt-relevanter Chemikalien. *Nachr Chem Tech Lab* 1991;39:26-33

5 Vetter W. Toxaphene. Theoretical aspects of the distribution of chlorinated bornanes including symmetrical aspects. *Chemosphere* 1993;26:1079-84

6 Ballschmiter K, Zell M. Baseline studies of the global pollution. *Intern J Environ Anal Chem* 1980;8:15-35

7 Luckas B, Vetter W, Fischer P, Heidemann G, Plötz J. Characteristic chlorinated hydrocarbon pattern in the blubber of seals from different marine regions. *Chemosphere* 1990;21:13-9

8 Muir DCG, Norstrom RJ, Simon M. Organochlorine contaminants in Arctic marine food chains: Accumulation of specific polychlorinated biphenyls and chlordane related compounds. *Environ Sci Technol* 1988;22:1071-9

9 Paasivirta J, Rantio T. Chloroterpenes and other organochlorines in Baltic, Finish and Arctic wildlife. *Chemosphere* 1991;22:47-55

10 Bidleman TF, Olney CE. Long range transport of toxaphene insecticide in the atmosphere of the western North Atlantic. *Nature* 1975;257:475-7

11 Parlar H, Becker F, Müller R, Lach G. Elimination of interfering compounds during GC determination of toxaphene residues by photodechlorination reactions. *Fres Z Anal Chem* 1988; 331:804-10

12 Vetter W, Luckas B. Meeressäuger als Bioindikatoren. UWSF-Z Umweltchem Ökotox 1991;3:324-7

13 Vetter W, Luckas B, Oehme M. Mass spectrometric characterization of the two main toxaphene congeners in biological material and their identification in the technical product. *In*: Dioxin'92, 12th International Symposium on Dioxins and Related Compounds. 24-28 August Tampere, Finland. Extended Abstracts 1992;8:177-180

14 Stern GA, Muir DCG, Ford CA, Grift NP, Dewailly E, Bidleman TF, Walla MD. Isolation and identification of two major recicalent toxaphene congeners in aquatic biota. *In*: Dioxin'92, 12th International Symposium on Dioxins and Related Compounds. 24-28 August Tampere, Finland. Extended Abstracts 1992;8:381-3

ANA

220

٠

ļ

r

i L