DIOXINS, DIBENZOFURANS AND DIOXIN-LIKE PCBS IN BLOOD OF AMERICANS

Schecter, A. ^A, DeVito, M.J.^B, Stanley, J., and Boggess, K.^C

I

ļ

^ADepartment of Preventive Medicine, Clinical Campus at Binghamton, SUNY Health Science Center at Syracuse, 88 Aldrich Ave, Binghamton, NY 13903 USA ^BCenter for Environmental Medicine and Lung Biology, University of North Carolina, at Chapel Hill, Chapel Hill, NC 27599-7310 ^cMidwest Research Institute, Kansas City, MO 64110

Objective: Dioxins (PCDDs), dibenzofurans (PCDFs), coplanar, mono-ortho and diortho polychlorinated biphenyls (PCBs) were measured in individual analyses of blood from fifty adult residents of the state of Michigan. The mean levels from these fifty and a pooled blood bank sample (N=5) from the general population of Missouri are compared with individual blood samples from two chemical plant workers with potential exposure to dioxins and two residents of Michigan who had previously been found to have elevated blood PCB levels from consuming fish.

Methods: One unit (450mL) of whole blood was collected from each of the individuals and pooled blood was obtained from a Kansas City blood bank (N=5). Analytic methodology consisted of gas chromatography and mass spectroscopy (GC-MS), previously described in detail.^{1,2} Analyses were performed at Midwest Research Institute under the supervision of J. Stanley and K. Boggess.³ This laboratory has been "certified" for competency by the World Health Organization in interlaboratory validation tests for dioxins, dibenzofurans and PCBs in human milk and blood.⁴

Results: The congener-specific results are shown on Table I. Both of the comparison groups, the pooled blood from Missouri and the individual analyses from Michigan, have relatively high levels of PCBs. The Michigan data are from 50 Vietnam veterans (six individuals with elevated TCDD were excluded from the average for TCDD, making N=44 for TCDD while for all of the other congeners, N=50). Patients 1 and 2 are both paper and pulp plant workers who were diagnosed and treated for Non-Hodgkins lymphoma and had no other known exposure to dioxins. Patient 1 shows an elevation of 2,3,7,8-TCDD, Patient 2, shows no elevation of 2,3,7,8-TCDD or 2,3,7,8-TCDF, the

congeners characteristic of paper and pulp bleaching. Patients 3 and 4 had PCBs levels much higher than the comparison groups, presumably due to their higher than normal consumption of fish contaminated with PCBs. One of the Michigan residents, Patient 4, also has an elevation of some dioxin congeners when compared with the control group, from an unknown source. Table II shows estimated dioxin toxic equivalents (TEqs) using USEPA dioxin toxicity factors (TEFs) for PCDD/Fs⁵ and Safe's suggested factors for PCBs.⁶

Conclusions: In the Michigan residents. Missouri pool. and chemical workers who had no known special exposure to PCBs, hiah levels of coplanar, mono-ortho and di-ortho PCBs were detected in whole blood.⁷ If toxicity⁶ correct. proposed estimates of dioxin-like are the PCBs are substantially to contributing total dioxin toxicity in Americans. Using these proposed estimates of PCB dioxin toxicity. and adding the dioxin di-ortho PCBs toxic equivalents from coplanar. mono-ortho and may three-fold increase in total toxic equivalents produce up to а dioxin bevond that from dioxins and dibenzofurans alone in the general population. Accurate exposure assessment should include measurement of toxic these PCBs to reflect possible human effects. However, PCB lower than these proposed estimates. toxicity may be based on new toxicity data.

References:

1 USEPA. PCDDs and PCDFs by HRGC/HRMS, SW-846 EPA method 8290. USEPA 1990;1B. 2 Dewailly E, Tremblay-Rousseau H, Carrier G, Groulx S, Gingrass S, Boggess K, Stanley JS, Weber JP. PCDFs and PCBs in human milk of women exposed to a PCB fire and of women from the general population of the province of Quebec - Canada. Organohalogen Compounds, Eco-Informa Press, Bayreuth, Germany 1990;1:227-230.

3 Boggess KE, Stanley JS. Analysis of human blood and semen samples for PCDDs, PCDFs, and PCBs in support of the State of Michigan Vietnam Veteran Agent Orange Study, Report Nos: 9829-A and 9940-A. Kansas City, MO: Midwest Research Institute, 1993.

4 World Health Organization. Levels of PCBs, PCDDs and PCDFs in human milk and blood: Second round of quality control studies - Environment and Health in Europe #37. Denmark: FADL Publishers, 1991;1-76.

5 USEPA. Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and dibenzofurans (CDDs and CDFs) and 1989 update. Springfield, VA 22161 PB90-145756: U.S. Department of Commerce, National Technical Information Service, 1989.

6 Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). *CRC Critical Reviews In Toxicology* 1990;21:51-88.

TABLE I: PCDDS, PCDFS, AND	PCBS IN BLOOD OF	FOUR INDIVIDU	ALS COMPARED	WITH GENERAL	POPULATION	CONTROLS
	Missouri*	Michigan#	Patient 1	Patient 2	Patient 3	Patient 4
2.3.7.8-TCDD	3.4	3.8	13.2	4.0	74	19.2
1.2.3.7.8-PeCDD	71	93	15.1	ND(7.0)	16.7	29.7
1.2.3.4.7 8-HYCDD	····	9.9	23.1	83	14.8	24.1
123678-HYCDD	675	72 1	118.0	64.1	97.1	156.0
1237904000	12 4	14.1	21.0	10.2	15.0	100.0
	10.4	11.9	21.0	10.2	13.0	23.0
	155.0	118.0	219.0	125.0	1/9.0	314.0
	1208.0	793.9	1670.0	829.0	/82.0	1800.0
2,3,7,8-1CUF	3.19	2.3	3.0	NU(2.3)	2.6	5.3
1,2,3,7,8-PeCDF	ND(2.1)	1.2	ND(1.9)	ND(2.5)	ND(1.9)	2.0
2,3,4,7,8-PeCDF	7.0	8.8	16.2	7.6	20.6	38.2
1,2,3,4,7,8-HxCDF	9.4	10.6	16.2	9.6	ND(15.8)	25.4
1,2,3,6,7,8-HxCDF	6.04	6.9	13.1	ND(8.0)	ND(13.2)	17.3
2,3,4,6,7,8-HxCDF	ND(5.7)	2.8	5.2	ND(4.6)	ND(6.2)	8.3
1,2,3,7,8,9-HxCDF	ND(5.7)	2.8	ND(5.0)	ND(4.6)	ND(5.0)	ND(4.1)
1,2,3,4,6,7,8-HpCDF	20.2	19.6	23.2	25.3	24.3	48.0
1.2.3.4.7.8.9-HpCDF	ND(6.7)	3.1	7.6	ND(5.4)	8.9	6.4
OCDF	ND(16.7)	93	31.9	15.6	24.6	21.6
Tetra PCB #77	34.2	78.6	248.0	10.5	936.0	1550.0
Penta PCB #126	10.2	104.4	526.0	28.1	1880.0	2490.0
Heya PCB #160	70.0	AE Q	79 /	20.1	200.0	412.0
Mono-ortho	29.9	40.0	70.4	0.0	299.0	413.0
	101/0	7170	3000	1700	2720	24200
#74 2 4 4' 5-Totra PCB	7602	14220	15700	8360	56100	91500
#105 2 2 2 4 4' Domto DOD	7002	14330	5100	2720	20700	64700
#105 2,3,3,4,4 - Fenta FUB	3200	0928	01000	2720	28700	64/00
#118 2,3,4,4,5-Fema PCB	1/1346	16213	21200	10700	94200	135000
#156 2,3,3,4,4,5-Hexa PCB	4202	5988	10000	5940	39000	38200
	5000		7500	0150	05000	
#99 2,2',4,4',5-Penta PCB	5328	11361	7530	6150	25000	61400
#128 2,2',3,3',4,4'-Hexa PCB	1200	2104	2720	1330	15200	18500
#138 2,2',3,4,4',5-Hexa PCB	14784	26297	26300	14000	98200	15200
#153 2,2',4,4',5,5'-Hexa PCB	23666	40055	39100	21200	132000	180000
#170 2,2',3,3',4,4',5-Hexa PCB	4260	6620	6280	4920	37300	50200
#180 2,2',3,4,4',5,5'-Hepta PCB	12728	19034	42000	16800	115000	103000
#183 2,2',3,4,4',5',6-Hepta PCB	1402	2534	5930	2620	19200	28700
#185 2.2'.3.4.5.5'.6-Hepta PCB	852	1284	1960	1070	14400	24700
#187 2.2'.3.4'.5.5'.6-Hepta PCB	3588	7378	17600	3990	51100	65900
TOTAL PCDDs	1,454	1 019	2.079	1.044	1.102	2.367
TOTAL PODEs	64	67	120	72	102	175
TOTAL PODD/Fs	1 519	1 096	2 100	1 116	1 204	2 542
TOTAL COPI ANAR	114	1,000	052	47	2 115	4 452
TOTAL MONO OBTUO	06 400	229	55 000	20 410	220 720	242 700
	30,498	20,029	33,990	23,410	220,/20	545,700
TOTAL DI-UNITIOS	67,808	116,667	149,420	12,080	307,400	547,000
IUIAL PUBS	104,420	167,525	206,262	101,537	/31,235	895,753
GRANU IOIAL	105,938	168,611	208,461	102,653	/32,439	898,295
+ 1,2,3,4,7,8/1,2,3,6,7,8-HxCDD	s sum of both. * Pool, N	■5. # TCDD is π	ean of 44 individu	ai analyses, all oth	ner congeners a	re mean of 50

·---

- --

- - -

Organohalogen Compounds (1993)

Volume 13

.- - -

53

i.

EXP

TABLE II: DIOXIN TOXIC EQUIVALENTS IN FOUR INDIVIDUALS' BLOOD COMPARED WITH GENERAL POPULATION CONTROLS (ppt, lipid)

	TEFs	Missouri*	Michigan#	Patient 1	Patient 2	Patient 3	Patient 4
2,3,7,8-TCDD	1.0	3.4	3.8	13.2	4.0	74	10.2
1,2,3,7,8-PeCDD	0.5	3.5	4.6	7.6	1.8	84	14.0
1,2,3,4,7,8-HxCDD	0.1	+	0.7	2.3	0.8	15	24.5
1.2.3.6.7.8-HxCDD	0.1	6.8	7.2	11.8	64	87	15.6
1.2.3.7.8.9-HxCDD	0.1	1.3	12	21	1.0	15	10.0
1.2.3.4.6.7.8-HoCDD	0.01	16	12	22	13	1.0	2.4
OCDD	0 001	12	0.8	17	0.8	1.0	3.1
2378-TCDF	0.001	0.3	0.0	03	0.0	0.0	1.8
12378-PeCDE	0.05	0.0	0.2	0.0	0.1	0.3	0.5
23478-PeCDE	0.00	35	4.4	9.1	2.0	10.0	0.1
1 2 3 4 7 8-HyCDE	0.5	0.0	4.7	16	3.0	10.3	19.1
1 2 3 6 7 8-HyCDE	0.1	0.9		1.0	1.0	0.8	2.5
234678-HyCDE	0.1	0.0	0.0	1.5	0.4	0.7	1.7
1 2 3 7 8 0-HyCDE	0.1	0.3	0.3	0.5	0.2	0.3	0.8
1 2 3 4 6 7 9-HACDE	0.1	0.3	0.3	0.3	0.2	0.3	0.2
	0.01	0.2	0.2	0.2	0.3	0.2	0.5
00DE	0.01	0.3	0.03	0.1	0.03	0.1	0.06
Totro PCP #77	0.001	0.01	0.01	0.03	0.02	0.02	0.02
Posta PCP #126	0.01	0.3	10.0	2.5	0.1	9.4	15.5
Here DCD #120	0.1	5.0	10.4	52.6	2.8	188.0	249.0
Mana otha	0.05	1.5	2.3	3.9	0.4	15.0	20.7
	0.001	10.0	70				
#20 2,4,4 - 111 FUD #74 2 4 4' 5 Totro DCP	0.001	10.2	7.0	3.9	1.7	2.7	24.3
#14 2,4,4,5-10(18 POD	0.001	7.0	14.3	15.7	8.4	56.1	81.5
#105 2,3,3,4,4 - Penta PCB	0.001	3.2	6.9	5.2	2.7	28.7	64.7
#110 2,3 ,4,4 ,5-Fenia FCB	0.001	11.4	16.2	21.2	10.7	94.2	135.0
#150 2,3,3,4,4,5-Dexa PCB	0.001	4.2	6.0	10.0	5.9	39.0	38.2
HOO DO' A A' E Dente DOD	0 00000						
#99 2,2,4,4,5-Penta PCB	0.00002	0.1	0.2	0.2	0.1	0.5	1.2
#128 2,2,3,3,4,4 - Hexa PCB	0.00002	0.02	0.04	0.1	0.03	0.3	0.4
#138 2,2,3,4,4,5-Hexa POB	0.00002	0.3	0.5	0.5	0.3	2.0	0.3
#153 2,2',4,4',5,5'-Hexa POB	0.00002	0.5	0.8	0.8	0.4	2.6	3.6
#170 2,2,3,3,4,4,5-Hexa PCB	0.00002	0.1	0.1	0.1	0.1	0.8	1.0
#180 2,2,3,4,4,5,5 - Hepta PCB	0.00002	0.3	0.4	0.8	0.3	2.3	2.1
#183 2,2',3,4,4',5',6-Hepta PCB	0.00002	0.03	0.1	0.1	0.05	0.4	0.6
#185 2,2',3,4,5,5',6-Hepta PCB	0.00002	0.02	0.03	0.04	0.02	0.3	0.5
#18/ 2,2,3,4,5,5,6-Hepta PCB	0.00002	0.1	0.2	0.4	0.08	1.0	1.3
TOTAL PODD TEQ		18	20	41	16	30	59
TOTAL PODE TEq		7	7	13	6	13	26
TOTAL PODD/F TEq		25	27	54	22	43	85
TOTAL COPLANAR TEq		7	14	59	3	212	285
TOTAL MONO-ORTHO TEQ		37	50	56	29	221	344
TOTAL DI-ORTHO TEQ		1	2	3	1	10	11
TOTAL PCB TEq		45	66	118	33	443	640
GRAND TOTAL TEq		70	93	172	55	486	725
+ 1,2,3,4,7,8/1,2,3,6,7,8-HxCDD is sum	of both. * Poo	ol, N=5. # TC[DD is mean of	44 individual a	nalyses, all othe	r congeners are	mean of 50.

•