Different effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and Aroclor 1254 on thyroxine metabolism and transport

Lans, Martine C., Brouwer, I., de Winden, P. and Brouwer A.

Department of Toxicology, Agricultural University Wageningen, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.

<u>Abstract</u>

2,3,7,8-Tetrachlorodibenzo-*p*-dioxin (TCDD) and AROCLOR 1254 exposure to rats decreased plasma thyroxine (T_4) levels and induced thyroxine glucuronidation (T_4 -UGT). In AROCLOR 1254 treated rats both T_4 -UGT induction and selective inhibition of plasma T_4 transport by transthyretin (TTR) were observed. This may be due to the presence of hydroxylated metabolites in plasma of especially AROCLOR 1254 but not TCDD-treated rats.

Introduction

PCBs, PCDDs and PCDFs can exhibit a common biological toxic response mediated by Ah-receptor binding, like thymic atrophy, hepatotoxicity, chloracne, induction of liver cytochrome P450 1A1 and EROD activity¹ Concurrently, thyroid hormone levels and metabolism are changed after exposure to 3,3',4,4'-tetrachlorobiphenyl² (CB 77), 3,3',4,4',5,5'-hexachlorobiphenyl³ (CB 169), AROCLOR 1254⁴ and TCDD^{5,6}. Induction of thyroxine (T₄) glucuronidation (T₄-UGT) and increased biliary clearance of T₄ has been suggested as the main cause of plasma T₄ depletion by TCDD and related compounds. Another mechanism involved in decreasing T₄ levels was found for easily metabolisable PCBs, such as CB 77⁷. Hydroxylated metabolites of these compounds, like 4-OH-3,3',4',5-tetrachlorobiphenyl, a metabolite of CB 77, showed specific inhibition of T₄ binding to transthyretin (TTR)⁷, the major T₄ transport protein in rodents, causing T4 levels to drop.

The aim of the present studies was to determine the contribution of both mechanisms (i.e. increased T_4 glucuronidation and TTR- T_4 binding inhibition) to the decrease of plasma T_4 levels of rats exposed to 2,3,7,8-TCDD or AROCLOR 1254.

Materials and methods

Experiment 1

8 Female Wistar rats (18-20 weeks) were treated with 25 μ g 2,3,7,8-TCDD/kg b.w. (TCDD) or cornoil (CON). After 4 days four CON or TCDD rats were treated with ¹²⁵I-T₄ (10-15 μ Ci), bloodsamples were taken after 3,6 and 24 hours. On day 5 these rats and the 4 CON or TCDD rats not treated with ¹²⁵I-T₄, were killed and organs/tissues were removed and stored at -80°C. Experiment 2

14 Female Wistar rats (18-20 weeks) were treated with 50 mg AROCLOR 1254/kg b.w.(ARO50), 500 mg AROCLOR 1254/kg b.w. (ARO500) or cornoil (CON). After 2 and 7 days 3 animals of each group were treated with ¹²⁵I-T₄ (10-15 μ Ci), bloodsamples were taken after 3,6 and 24 hours. On day 3 and 8 these animals and 4 ARO50, ARO500 and CON rats not treated with ¹²⁵I-T₄ were killed and organs/tissues were removed and stored at -80°C.

Biochemical parameters

EROD-activity was measured according to Lubet et al.⁹. T_4 levels were measured using a chemoluminescense immunoassay (Amerlite, Amersham). T_4 glucuronidation was measured by the method as described by Beetstra et al.¹⁰ (1991). ¹²⁵I- T_4 binding to TTR in plasma was determined by PAGE-gelelectroforese and counting radioactivity of the separated ¹²⁵I- T_4 -binding proteins: albumin and TTR.

Results

The plasma T₄ levels and binding and hepatic EROD and T₄-UGT results are listed in Table 1. All exposed groups, except the ARO50 group, showed a marked decrease in plasma total T₄ levels. EROD activity was significantly induced by TCDD and ARO50 and ARO500 treatment (resp. 170, 11 and 58 times induced). Simultaneously, T₄-UGT activity was increased for both low ARO50 and high dosed ARO500 groups after 3 or 8 days and significantly induced by TCDD after 4 days. However, due to large interindividual variation the T₄-UGT activity in AROCLOR rats was not significantly increased. Specific binding of ¹²⁵I-T₄ to TTR or albumin in sera of TCDD or ARO500 exposed rats was decreased. In ARO500 rats a drastic decrease in the ratios of specific ¹²⁵I-T₄ binding to TTR vs. albumin was found immediately at 3,6, and 24 hours after ¹²⁵I-T₄ exposure, while in TCDD exposed rats, the ratio of ¹²⁵I-T₄ binding to TTR vs. albumin was normal at 3 hours but decreasing at 6 and 24 hours after ¹²⁵I-T₄ exposure.

Discussion

Exposure of rats to TCDD or low or high doses of AROCLOR 1254, led to deceases in plasma total T_4 levels, as earlier described by Bastomsky^{4,6}, Brouwer⁷ and Lans⁵. Concommitantly, T_4 -UGT activity was induced in tandem with EROD-activity in both TCDD and low and high AROCLOR 1254 treated groups. Ratios of ¹²⁵I- T_4 binding to TTR vs. albumin, used as indicators of selective displacement of T_4 from TTR⁷, were reduced especially in high dosed AROCLOR 1254 rats and less in TCDD treated animals. This reduction in ¹²⁵I- T_4 binding ratios indicate the presence of hydroxylated metabolites in AROCLOR 1254 treated rats. Klasson-Wehler¹¹ showed the presence of

Table 1 Effects of 2,3,7,8-TCDD and low and high dose AROCLOR 1254 exposure on plasma T_4 levels, EROD activity, T_4 -glucuronidation and specific binding of ¹²⁵I- T_4 to TTR and albumin. Ratios of ¹²⁵I- T_4 binding to TTR over albumin are given at T=3,6 and 24 hours after ¹²⁵I- T_4 exposure. Results shown are means \pm S.D. of tri- or quadruplicate measurements. Significant differences (Student's t-Test): *P < 0.05

Стоир	Plasma TT ₄ (nM)	EROD-act nmol/min/ mg	T₄-UGT pmol/min/ mg	T₄- binding TTR/alb (3h)	T₄- binding TTR/alb (6h)	T₄- binding TTR/alb (24 h)
Control Exp. 1	34.9 ± 8.2	0.020 ± 0.003	1.73 ± 0.13	4.2	3.9	4.6
TCDD	18.7 ± 1.1	3.390 ± 0.731	6.78 ± 1.17	4.4	3.1	2.5
Control Exp.2	29.3 ± 3.7	0.039 ± 0.007	2.39 ± 0.85	4.1	3.7	8.0
ARO50 day 3	32.9 ± 6.0	0.469 ± 0.461	3.34 ± 1.62	4.4	3.8	3.8
ARO500 day 3	12.9 ± 11.9*	2.336 ± 1.026	6.84 ± 2.34	2.7	1.7	2.3
ARO50 day 8	31.2 ± 7.9	0.345 ± 0.344	2.55 ± 1.34	4.1	3.6	4.2
ARO500 day 8	$10.1 \pm 5.2^{\circ}$	2.288 ± 0.799*	11.80 ± 8.23	1.5	1.2	1.6

significant amounts of hydroxylated metabolites of PCBs in plasma of environmentally exposed seal, polar bear and man. The major metabolite present in these plasma samples, 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-PeCB), has high affinity for the TTR protein⁷. In addition this metabolite is found in plasma of rats exposed to AROCLOR 1254¹¹. Some hydroxylated PCB-metabolites are capable of inhibiting TTR- T_4 binding as was found in vitro⁸, requiring a meta- or para hydroxylation with adjacent halogen substitution(s).

TCDD treated animals also showed some reduction in ¹²⁵I-T₄ binding ratios. Hydroxymetabolites of TCDD do have a similar high affinity for T₄ binding site on TTR as the 4-OH-PeCB. However, analysis of rat plasma did not show any presence of OHmetabolites of TCDD¹².

139

i.

In conclusion, plasma T_4 reduction by TCDD is mainly caused by T_4 -UGT induction, while both T_4 -UGT induction and T_4 displacement from TTR by OH-PCBs may be involved in T_4 reduction by AROCLOR 1254 and other PCB mixtures.

References

1 McConnell, E.E. Acute and chronic toxicity, carcinogenesis, reproduction, teratogenesis and mutagenesis in animals. In: *Halogenated biphenyls, terphenyls, naphtalenes, dibenzodioxins and related products* (Ed. R.D. Kimbrough), Elsevier/North Holland, 1980:109-150.

2 Brouwer, A., van den Berg, K.J. Binding of a metabolite of 3,4,3',4'-tetrachlorobiphenyl to transthyretin reduces serum vitamin A transport by inhibiting the formation of the protein complex carrying both retinol and thyroxin. *Toxicol. Appl. Pharmacol.* 1986;85:301-312.

3 Morse, D.C., Groen, D., Veerman, M., Van Amerongen, C.J., Koeter, H.B.W.M., Smits van Prooije, A.E., Koeman, J.H., Brouwer, A. Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. *Toxicol. and Appl. Pharmacol.* 1993; submitted.

4 Bastomsky, C.H. Effect of a polychlorinated biphenyl mixture (AROCLOR 1254) and DDT on biliary thyroxine excretion in rats. *Endocrinology* 1974;95:1150-1155.

5 Lans, M.C., Brouwer, A., Koppe, J.G. and van den Berg M. Enzyme induction and alterations in thyroid hormone, vitamin A and K levels by TCDD in neonatal and maternal rats. *Chemosphere* 1990;20(7-9):1129-1134.

6 Bastomsky, C.H. Enhanced thyroxine metabolism and high uptake goiters after a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Endocrinology* 1977;101:292-296.

7 Brouwer, A. Inhibition of thyroid hormone transport in plasma of rats by polychlorinated biphenyls. *Arch. Toxicol.* 1989;13:440-445.

8 Lans, M.C., Klasson-wchler, E., Willemsen, M., Meussen, E., Safe, S., Brouwer, A. Structuredependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and dibenzofurans with human transthyretin. *Chem.-Biol. Int.* 1993;submitted.

9 Lubet, R.A., Syp, J.-L., Nelson, J.O., Nims, R.W. Induction of hepatic cytochrome P-450 mediated alkoxyresorufin-O-deethylase activities in different species by prototype P-450 inducers. *Chem.-Biol. Int.* 1990;75:325-339.

10 Beetstra, J.B., Van Engelen, J.G.M., Karels, P., Van der Hoek, H.J., De Jong, M., Docter, R., Krenning, E.P., Henneman, G., Brouwer, A. and Visser, T.J. Thyroxine and 3,3',5-triiodothyronine are glucuronidated in rat liver by different uridine diphosphate-glucuronyltransferases. *Endocrinology*, 1991;128:741-746.

11 Klasson-Wehler, E., Kuroki, H., Athanasiadou, M. and Bergman, Å. Selective retention of hydroxylated PCBs in blood. In: Organohalogen Compounds, Vol. 10, Toxicology, Epidemiology, Risk Assessment and Management, Finnish Institute of Occupational Health, Helsinki 1992:121-122.

12 Van den Berg, M., personal communication.