Sintering Plants of Steel Industry - The Most Important Thermical PCDD/F Source in Industrialized Regions?

Lahl U.

Staatsrat beim Senator fuer Umweltschutz und Stadtentwicklung, Am Wall 177, D - 28 195 Bremen, Germany

A sintering plant is the core of an integrated iron metallurgical plant. Here, the iron ore is sintered to larger fragments for better processing in the subsequent blast-furnace plant. For this, the ore is mixed with coke and heated to a sintering temperature of about 1,000°C with a large air surplus. Beneath ore pretreatment, sintering plants serve for recycling of dusts, scrap and abrasion from other processes of the metallurgical plant to recover the iron for further use in the blast furnace. But this reasonable waste management method is accompanied by the problem of introducing traces of chlorine and organic compounds responsible for the generation of PCDD/F within these plants. Sintering plants mainly use simple dust filters (electrostatic precipitators) for pollution outlet control. Though clean gas does not contain extremely high concentrations of pollutants, high gas fluxes of up to 1 million m³/h and more can cause considerable annual freights emitted by these types of plants.

In western Europe, to our knowledge 40 sintering plants are in operation, 14 of them in Germany. Table 1 shows age, size of the sintering band, and clean gas volume flux of all these plants.

Plant	Con- struc- ted in	Sinterband m²	Estima- ted Clean Gas Volume Flux Mio m ³ /h	Filter Type
Austria	1942 1942 1942 1942 1974 1973	610 75 75 75 75 75 190 120	2.2 0.3 0.3 0.3 0.3 0.6 0.4	mech. dry mech. dry mech. dry mech. dry electro electro
Belgium	1960 1976 1976 1964 1967 1972	1,273 192 152 321 210 175 313	4.5 0.6 0.5 1.1 0.7 0.6 1.0	electro electro electro electro electro + mech. dry
Finland	1964 1964 1976 1961	246 75 75 75 21	1.0 0.3 0.3 0.3 0.1	mech. dry mech. dry mech. dry mech. dry

Table 1: Technical data of European sintering plants, 1991

· - -

· -

.....

France		2 200	7 6	
France	1062	2,209	7.5	olootro
	1903	140	0.5	electro
	1900	100	0.5	electro
	1072	410	1.4	electro
	1973	400	1.3	
	1002	75	0.3	mech. wet
	1973	/5		mecn. wet + ary
	1963	196	0.7	electro
	1970	400	1.3	electro
	1063	166	0.6	cyclone
	1964	187	0.6	electro
Germany		3,102	10.2	
Thyssen	1964	150	0.5	electro
-	1970	444	1.5	electro
	1979	250	0.8	electro
	1960	94	0.3	electro
Hoesch	1961	150	0.5	electro
	1974	174	0.6	electro
Mannesmann	1972	400	1.3	electro
Krupp	1971	400	1.3	electro
Salzgitter	1963	160	0.5	electro
Klöckner	1970	150	0.5	electro
Dillingen	1960	160	0.5	electro
-	1981	258	0.9	electro
Eko	1975	156	0.5	electro
	1975	156	0.5	electro
Europe, total			25.4	

25

I

i

Recent and actual emission analyses of German plants show a PCDD/F contamination of 3 - 10 ng I-TEQ/Nm³ in clean gas^{1 2}. Under the assumption that all European plants have clean gas contaminations in the same order of magnitude, these average values would result in a total emission of more than 1 kg I-TEQ PCDD/F from sintering plants. This exceeds the sum of all other known thermical sources. It seems, that sintering plants are a more important source of PCDD/F emissions than e.g. municipal solid waste incinerators³.

This contribution will discuss this problem using actual PCDD/F emission measurements at a sintering plant in northern Germany.

Input-related strategies for reducing PCDD/F generation and release within sintering plants will be proposed.

Advanced filtering techniques for reducing clean gas contamination will have to be tested and installed.

With this knowledge, iron and steel plants have to be regarded as problematical as other thermical plants. Therefore, emission control authorities will have to take care for the best techniques to be installed at these plants. Iron and steel industry should have to keep the emission limit of 0.1 ng I-TEQ/m³ for clean gas, notwithstanding the economical problems this industrial branch has to face at the moment.

References

1. Bruckmann P. (Ministry of Environment, Northrhine-Westfalia): Dioxin- und Furanemissionen industrieller Anlagen und ihre systematische Erfassung. Vortrag vor dem Landesbeirat für Immissionsschutz, 56. Sitzung, 29.10.1992

2. Own measurements, Senator fuer Umweltschutz und Stadtentwicklung, Bremen, 1993

3. Lahl U., Jager J.: Sinteranlagen - eine der bedeutendsten Dioxinquellen. Muellmagazin, in press T