Emission Level of Co-PCBs from MSW Incinerators

Kawakami, I.A., Matsuzawa, Y.B., Tanaka, M.B., Sakai, S.C., Hiraoka, M.C. Sumitomo Heavy Industries, Ltd. Sumitomo Jukikai Bldg. 1, Kanda Nishiki-cho 2-chome, Chiyoda-ku, Tokyo 101 Japan

The Institute of Public Health, 6-1, Shiroganedai 4-chome, Meguro-ku, Tokyo

108 Japan

cKyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-01 Japan

Abstract

Under various conditions and simultaneously with measurements for dioxin and other related substances, the authors made many measurements of coplanar PCBs (Co-PCBs) in the flue gas of municipal solid waste (MSW) incinerators. We found that the toxic contribution of Co-PCBs to dioxin toxicity was low at about 5 percent, far less than that encounteredin foodstuffs.

Introduction

MSW incineration facilities are gaining acceptance among neighboring residents as progress is made in reducing dioxin emission level. Co-PCBs, which are structurally similar to dioxin, may be also the source of public concern; and proper operation of such incineration facilities requires that Co-PCBs emission also be fully investigated. Here, we surveyed three MSW incineration plants and obtained some understanding of the relation between Co-PCBs, dioxin and related substances. We report our findings below.

Experiments

outline of surveys and experiments is presented in Table 1.

Table 1. Outline of Investigation

Test	Subject	Facility	Capacity/Type/Gas cool	Dust collector
1	Each time Emission from an intermittent operation plant designed before GUIDLINE	Α	10t/8h/line Stoker/ water spray	Electrostatic precipitator
2	Each time Emission from an intermittent operation plant designed after GUIDLINE Change along process flow	: В	12.5t/8h/line Stoker/ water spray	Bag house
3	Change along process flow	С	65t/24h/line Stoker/ water spray	Electrostatic precipitator

Results

Survey results are shown in Tables 2. \sim 5. and Figures 1. \sim 6. A wide range analysis data of Co-PCBs were obtained, because we selected an existing facility without consideration for dioxin and new one with a lot of dioxin countermeasures, and also special efforts were made to measure concentration fluctuations as related to measurement position and non-normal operation.

Table 2. Test-1 Analysis Data (Facility-A)

		RUN 1	RU	N 2	RUN 3*	RUN 4*	RUN 5*	RUN 6		N 7	RUN 8**	RUN 9**	RUN 10**
	Unit	Start-up	Steady	state	Shut-dn1	Shut-dn2	Night	Start-up	Steady	state	Shut-dn1)	Shut-dn2	Night
	L	EP-out	EP-1n	EP-out	EP-out	EP-out	EP-out	EP-out		EP-out	EP-out	EP-out	EP-out
Comb-Temp.		100-800	600-	980	480-760	400-480	100-360	120-360	560-	880	160-460	200-240	80-180
EP-Temp.	*C	<u>80</u> -280	260-	300	300-330	300-320	100-300	90-280	220-		140-240	140-150	80-150
O₂ av.	%	14.8	14. 2	14, 7	16.0	18.8	20. 5	14. 2	15.0	15, 5	20.0	20.6	20. 9
CO av.	PPM	359		219	696	1588	424	573		246	455	327	22
THC_	PPM	10		9	21	345	250	68		16	98	102	18
	ug/m3N			43	170	620	110	87		25	59	57	10
	ug/m3N	300		440	1000	3800	230	220		_100	170	25	3. 7
PCDDs	ng/m3N	740	970	2000	10000	40000	1200	2100	870	950	1400	1500	49
PCDFs	ng/m3N	1700	2100	2500	13000	15000	710	2400	940	860	670	1700	40
I-TEQ	ng/m3N	40.3	48. 3	66. 4	336. 1	646. 5	18. 3	55, 6	35.8	23. 1	22. 2	54. 2	1.0
PCBs	ng/m3N	200	290	360	3000	3400	950	1300	150	130	550	310	16
Co-C14B1	ng/m3N	19	13	25	160	390	30	73	7.0	10	11	4. 8	0. 2
Co-C15Bi	ng/m3N	13	9. 3	24	100	220	16	28	4.3	7. 5	5.3	2.5	0.1
Co-C16Bi	ng/m3N	1.5	1.3	5. 1	50	67	6. 2	3, 4	0.64	1. 4	0.8	0.6	0.3
Co-PC8sTE	ng/m3N	2.0	1. 4	3. 7	15, 5	33. 4	2. 5	4.3	0.66	1. 2	0. B	0. 4	0. 025
Hamberg ²	1	1 1			1	1		1					
Co-PCBsTE	ng/m3N	1.6	1.1	2.7	14.1	29.3	2.1	3.7	0.53	0.9	0.7	0.3	0. 027
Safe ³					1								

*Stock fire operation **Burn-out operation

<u>[able 3.]</u>	est-2 An	alysis Da	ata (Fac	IIIty-B)			600 6.0		RUN 6		 	
	RUN 1						RUN 3**	RUN 7				
	Unit		Steady s				ßhut-dn2		Startup2		state	
		Furnace	GC-out	BF-in	BF-out	8F-out	BF-out	BF-out	BF-out	8F-In	BF-out	
Comb-Temp.	Ç		780-1	390		600-930	324-460	170-306	B10-960	805-925		
BF-Temp.	°C	170-180				160-180	130-160	120-155	165-180	170-180		
O ₂ av.	%	10.3	10. 5	10.3	11. 4	15, 1	20.7	20. 9	7.8	11. 2	11.6	
CO av.	PPM				1.0	382	368	21	9		1. 0	
THC	PPM				0, 1	44	157	14.6	1.7		0, 4	
CBs	ц g/m3N	0. 94	7.1	11	7. 2	28	59	22	14	12	9. 1	
CPs_	µg/m3N	0.46	4. 2	9. 5	12	340	55	26	36	16	20	
PCDDs	ng/m3N	30	140	83	130	71	190	190	270	240	160	
PCDFs	ng/m3N	70	630	130	540	140	280	160	540	310	240	
I-TEQ	ng/m3N	2.02	20. 9	3.18	14, 25	2.86	6. 48	5. 09	8. 46	8.90	6, 55	
PC8s	ng/m3N	64	206	240	190	120	350	68	360	130	110	
Co-C14B1	ng/m3N	0. 33	3, 1	2.4	4. 1	4, 3	7. 5	1.3	13	5.5	5, 4	
Co-C15BI	ng/m3N	0.39	4.8	1.3	3. 3	1. 4	2.9	1.1	6.0	2.7	2.2	
Co-C168i	ng/m3N	0.46	7, 23	0.62	4.1	0. 55	1.5	1.1	2.9	1. 4	0.95	
Co-PCBsTE	ng/m3N	0.06	0. 76	0. 20	0. 52	0. 21	0.46	0. 18	0.93	0. 43	0.35	
Hamberg ²	}	1						ŀ				
Co-PC8sT6	ng/m3N	0.06	0.87	0.18	0.58	0. 21	0.45	0.18	0.88	0.40	0.32	
Safe ³	l	_ ,,,,,							L	<u></u>		
GC=Gas (cooler [F=Bag fi	Iter	**8	urn-out	operation	on					

Table 4. Test-3 Analysis Data (Facility-C)									
	Unit	GC out	EP-in_	EP-out					
Gas-Temp.	C	300	260	245					
O ₂ av.	%	7.7	7.7	11.8					
CO av.	PPM			33					
THC	PPM			2.8					
CBs	ug/m3N	13	10	21					
CPs	UB/M3N	38	46_	67					
PC00s	ng/m3N	340	370	110					
PCDFs :	ng/m3N	1060	800	110					
1-TEQ	ng/m3N	29.6	23.5_	3.6					
Co-C14Bi	ng/m3N	4.0		2.8					
Co-CI58i	ng/m3N	11.1		2.8					
Co-C16Bi	ng/m3N	9.9		0.89					
Co-PC8sTE	ng/m3N	1. 73		0. 42					
Hamberg ²									
Co-PCBsTE	ng/m3N	1.64		0.35					
Safe ³	1								

Table 5. Analysis Data of dust and slag Uniting										
	Te	st-1 (Fac			Test-2	Test-3				
ŀ	RUN	2	RUN 5*		(Facility B)					
Ĭ	Steady	state			Steady state	Steady state				
	EP-dust	Slag	EP-dust	EP-dust	BF-dust	EP~dust				
PCDOs	2900	0. 89	4200	1700	230	210				
PCDFs	810	1.7	1900	300	110	80				
I-TEQ	36.7	0.02	74.7	16.7	4. 41	4.3				
PCBs_	19	<u>1.</u> 5	100	15	16_					
Co-C14B1	0.97	0.005	3.8	0.35	0.84	1.6				
Co-C158i	1.3	0.001	4.7	0.45	0.65	1.6				
Co-C16Bi	0.25	0.001	_1.7_	0.096	0.44	0.52				
Co-PCBsTE	0.20	0.00016	0.72	0.068	0.10	0.24				
Hamberg ²	i									
Co-PCBsTE	0.15	0.00020	0.59	0.053	0.10	0. 21				
Safe ³						L				

Figure 1. Concentration Change along Process Flow

Figure 2 Relation between CO and Co-PCBs

Figure 3. Relation between CBs+CPs and Co-PCBs

Discussion

Figures 1., arranged in processing flow, suggests that Co-PCBs are produced by a principle similar to that for PCDDs and PCDFs. Figures 2. ~6. show strong correlations. In Figure 5. the toxicity contribution of Co-PCBs to dioxin toxicity was low at about 5 percent (in contrast, that for foodstuffs was reported to be 260 percent to1000 percent). From the above, we believe that emissions of Co-PCBs can be suppressed simultaneously in conjunction with measuresfor reducingdioxin emission.

Figure 4. Relation between PCBs and Co-PCBs in Flue Gas (Black:EP/BF outlet, White:Furnace~EP/BF inlet)

Figure 5. Relation between PCDDs/PCDFs and Co-PCBs in Flue Gas (Black:EP/BF outlet, White:Furnace~EP/BF inlet)

Figure 6. Relation between PCDDs/PCDFs and Co-PCBs in dast

Reference

1 S. Sakal et al.: Coplanar PCBs and PCDDs/PCDFs in Municipal Waste Incineration, DIOXIN'92 Vol. 9 Tampere Finland, 1992
2 Hamberg et al.: Chemospher, 20, 1161-1164, 1990
3 Safe et al.: Short paper of DIOXIN'90, Vol. 2, Bayrueth Germany, 1990
4 Masuda, Y: Dioxin Regulation and Research Action in Japan, DIOXIN'90, Vol. 2, Bayrueth Germany, 1990

5 Kashimoto, T et al.: PCDDs/PCDFs and Coplanar PCBs in Japanese coastal and commercially marketed fish. EISEIKSGAKU, Vol. 37, No. 2, Japan, 1991