SYNTHESIS OF POLYFLUORINATED DIBENZO-p-DIOXINS

Haffer. U., Rotard, W., Mailahn, W.A, Schulze, G.B

A Institut für Wasser-, Boden- und Lufthygiene des Bundesgesundheitsamtes, Corrensplatz 1, W-1000 Berlin 33

^B Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, W-1000 Berlin 12

1. Abstract

Fluorinated dibenzo-p-dioxins have been selectively synthesized from fluorophenols and isolated by column- and thin layer chromatography.

2. Introduction

During certain thermal processes in which organic and fluorine compounds coinside (e.g. industrial production of aluminium) we assume that fluorinated dibenzo-p-dioxins (PFDD) and -furans (PFDF) may be generated. Mass spectrometric analysis of the products obtained by thermolytic reaction of hexafluorobenzene in the influence of air suggests the formation of O₈FDD/F. To enable more detailed investigations, if and to which extent PFDD/F's are released in thermal processes, reference-PFDD/F-compounds are a necessity. The synthesis of 2,3-D₂FDD (from 1,2,4,5-tetrafluorobenzene and catechol)¹, 2,7-D₂FDD (from potassium-1-bromo-4-fluorophenolate in methanol)² and O₈FDD (from pentafluorophenolate with copper powder at 300°C)³ have been previously described.

3. Experimental and results

Like synthesizing PCDD's from chlorophenols⁴, reaction of fluorophenols yield PFDD's.

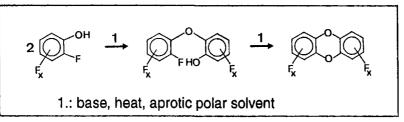


Figure 1: synthesis of PFDD's from F_x-phenols

This reaction of fluorophenols envolves an intermolecular nucleophilic aromatic substitution, followed by an intramolecular one, to give the corresponding PFDD's. The reactions were carried out in a polar, aprotic solvent in the presence of a base at higher temperatures. Reaction time may vary up to 8 days (see Tab.1).

PFDD	FP	reaction time	mp[°C]
1,6-D₂FDD 2,7-D₂FDD 2,7-D₂FDD 1,2,6,7-T₄FDD 1,3,6,9-T₄FDD 2,3,7,8-T₄FDD 1,2,4,6,7,9-H ₆ FDD O ₈ FDD	2,6-D ₂ FP 2,5-D ₂ FP 2,4-D ₂ FP 2,3,4-T ₃ FP 2,3,5-T ₃ FP 2,4,5-T ₃ FP 2,3,5,6-T ₄ FP P ₅ FP	12 h 3 d 2 d 6 d 8 d 2 d 6 d 4 d	163 174-176 174-176 167 - 183 133-134 161
FP: fluorophenol; mp:melting point			

Table 1: reaction times, melting points and starting compounds of some PFDD's

The resulting PFDD's were isolated from the reaction mixture by column- and, when necessary, thin layer chromatography with silicagel and n-hexane as eluent.

This simple synthesis has the advantage, that all starting compounds are commercially available (except 2,3,4,5- and 2,3,4,6-tetrafluorophengl).

The structures of the obtained PFDD's were confirmed by IR, MS, ¹H-NMR and ¹⁹F-NMR. Figures 2 - 5 show the IR-, MS- and NMR-spectra in the case of the symmetric 2,3,7,8-T₄FDD, figures 6 + 7 show the NMR-spectra of the non-symmetric 2,7-D₂FDD.

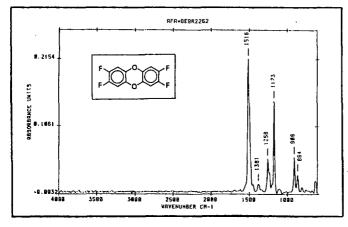
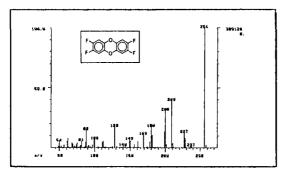



Figure 2: IR-spectrum of 2,3,7,8-T₄FDD (EFS 48, Bruker)

ļ

Figure 3: El-mass-spectrum of 2,3,7,8-T₄FDD (INCOS 50, Finnigan MAT)

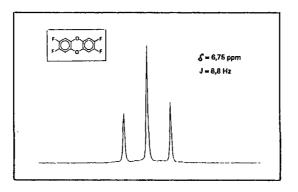


Figure 4: 1H-NMR-spectrum of 2,3,7,8-T₄FDD (AM 270, Bruker)

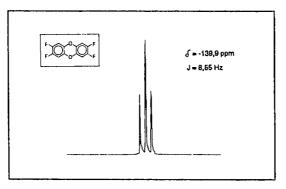


Figure 5: ¹⁹F-NMR-spectrum of 2,3,7,8-T₄FDD (FX 90 Q, Joel)

ANA

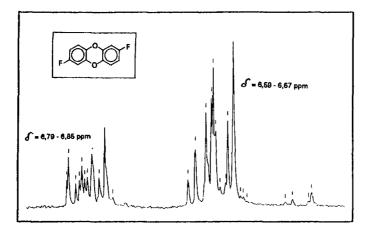


Figure 6: 1H-NMR-spectrum of 2,7-D₂FDD (AM 270, Bruker)

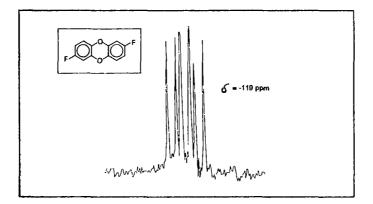


Figure 7: ¹⁹F-NMR-spectrum of 2,7-D₂FDD (FX 90 Q, Joel)

4. References

- Kende AS, Wade JJ, Ridge D, Poland A. J.Org.Chem.1974;7:931-7
 Baciu I, Penciu A.Rev.Chim. (Bucharest) 1969;20(5):305
 Deniville L, Huynh AH. Bull.Soc.Chim.Fr. 1974;487-489

- 4 Buu-Hoi et al., J. Heterocycl. Chem. 1979;51:2273-2275