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MULTIFRACTALS AND NETWORK EFFECTS 
IN SEVESO DIOXIN POLLUTION 

G. Salvadorii, S. P. Rattî -S, G. Bellii, S. Lovejoy', D. SchertzeH 

ABSTRACT 

In this work we analyze the Dioxin (TCDD) pollution of the Seveso (Milan, Italy) territory, using 
contemporaneously the measurements collected from 1976 up to. 1981. First we present the 
mathematical framework of Universal Multifractals, discussing their practical importance as a new 
statistical parametrization of pollution intensities at different scales; we also point out the relevance 
of a multifractal approach in connection with the problem of toxicity and the measure of pollutant on 
a sparse (fractal) network. Then we apply tiie Double Trace Moment (DTM) multifractal technique in 
order to estimate botii a (tiie degree of multifractality) and C; (die codimension of tiie mean field) 
and (using spectral analysis) we also calculate H (the degree of non-conservation of the process). 
Finally we discuss the problems of undersampling and network sparseness and provide a way to 
statistically correct for these effects. We conclude tiiat the ground distribution of Dioxin shows clear 
multifractal features and can be classified as an unconditionally hard universal multifractal process. 

1. Introduction 
Many geophysical phenomena show extreme variability over a wide range of scales. This 

behaviour is the result of non-linear interactions between different processes at various scales and 
involves the appearance of complex (multi)fractal structures (see e.g. the papers in Ref. [1]). 
Developments in multifractalsf^l provide the link between experimental observations of natural 
phenomena and mathematical ideas about scaling. Whereas fractals are sufficient for dealing with 
seals invariant sets, multifractals are now understood as the natural theoretical framework for scale 
invariant ^ d & . There is now considerable evidenceC '̂̂ l that various atmospheric fields (such as 
rain, wind, clouds, temperature and radiation fields) are multifiractals. 

In this paper we analyse the Dioxin pollution of the Seveso territory which occurred on July IO''', 
1976, when a chemical reactor of the Icmesa factory in Seveso (Milan, Northen Italy) exploded, 
spreading a large amount of Tetra-Chloro-Dibenzo-p-Dioxin (TCDD) over an area of about 8 km^. 

As is well knowTi, Dioxin is a very stable toxic heavy molecule and the accident has led to 
several epidemiological studies and health countermeasurest^l. Toxicity is normally discussed in 
terms of mixing ratios; however, due to the extreme variability of the in situ measurements, mixing 
ratios are usually averaged over the scale of the detecting network. Nevertheless, the physicd effects 
of toxicity often depend on the strictiy local concentration of pollutant: areas of high concentration 
("hot spots") may be invisible to the detecting network!^! (due to either insufficient spatial or 
dimensional resolution) but may nonetheless be highly significant from a health perspective. The 
advantage of multifractals is that they can characterize the detailed structure of the pollutant 
distribution over the entire range of scales, from the strictiy local concentration up to the largest 
spatial average. 

Our aim is to provide a description of the ground pollution in terms of multifractals: in fact, over 
die relevant scales, all of the non-linear mechanisms involved in dispersing die Dioxin - turbulent 
diffusion, fallout (scavenging, dry deposition), infiltration in the soil - are expected to be cascade 
processes (especially the turbulent diffusion) operating over wide ranges of scales and it is now 
known that cascade mechanisms generally lead to multifractal fields. The measuring network is also 
likely to be scaling (this can be understood since it is sparse with "holes" at all scales) and we shall 
see that it is fruitful to consider the density of stations itself as a multifractal measure. 
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2. The Pollution 
Thc collection of measurements took several years starting in 1976 and was peiformed during a 

series of sampling campaigns. In this paper we use the data collected during diffeient campaigns, 
starting from 1976 soon after tiie accident up to 1981, for a total of 2424 measurements. A basic 
difference from a previous workt^l is that we now use contemporaneously all the available data, 
without splitting them into separate data bashes corresponding to different campaigns. The 
justification for doing so stays in that the range of variability of measured pollution is almost the 
same for each campaign; hence the multifractal analyses are not affected by considering all the data 
at the same time. 

The Dioxin distribution is extremely variable (intermittent), which is a typical multifractal 
"signature": in fact, tiie amount of pollution ranges from "lO'i \iginfi to "2.7-104 }i.g/m2. 

The locations of the sampling points form a sparse network having fractal (correlation) 
dimensionl^l Dc"'1.4. This roughly indicates that (over the corresponding scales) the network is not 
space-filling, i.e. "holes" occur at all scales. It is important to stress that the scaling ofthe network^ 
holds over a fairly large range: from »20m up to at least »2km, i.e. about two orders of magnitude; 
this, in tum, justifies the application of multifractal analysis techniques over the corresponding range 
of scales. 

Several parametric descriptions!''! of the TCDD distribution have abeady been attempted. All of 
such models smoothed the original field by means of regular surfaces, washing out any extreme 
values ("hot spots"). Of course any description aiming to be more realistic should not disregard such 
values as being anomalous, especially since they contribute significantiy to the mean of the process. 
Some of us have already proposed a (mono)fract;il descriptionl^l of the Dioxin distribution; we now 
want to take advantage of the more powerful opportunities offered by a universal multifractal 
approach. In fact (mono)fractals can be used, at best, to approximate a multifractal process near the 
mean, but will generally miss the extremes. Moreover, in the following we will take advantage of the 
existence of stable and attractive universality classes for multifractal processes: this means that many 
of tiie details of all the complex non-linear interactions will be "washed out" when they occur over a 
large enough number of interacting structures, ultimately only a few parameters will matter. 

In the following sections we will present the mathematical framework of multifractals, 
improving the brief description we gave of them in a previous workl^l and extending the discussion 
to the network effects. 

3. The Multifractal Analysis 

For a multifractal field^B-il the following (scaling) relation holds: 

Pr(Px^ii^)'>'^"'^^ (1) 

where Px is the field intensity (here the Dioxin concentration) at a given resolution X, y is the order 
of singularity and C(Y) is the codimension function describing the "sparseness" of the field 
intensities. Eq. (1) relates the intensity of the field Px, to its probability of occurence through the 
function c(^, which is independent of any particular resolution X. 

For universal multifractals c('if) may be written in terms of three parameterst^s-il; 

c(y-H) = C i \ — ^ - ^ - \ fo ran t l (2a) 
y a'Ci a ) 

c, ' 
c(y-H)-.= Cie ' fora=^l (2b) 

and--f 77 = 7. The parameter ais die "degree of multifractality" ofthe field, varying from a=0 

(monofractal) to a=2 (Gaussian generator) and sfiecifying the class of the probability distribution; Cj 
is die "codimension of the average field": H is tbe "degreeof non-conservation ofthe process". An 

1 Dc 
' Scaling means that the average number of stations in a circle of radius R has the power law lorm <n(R)> -xR 

I 
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equivalent probabilistic description of the distributions can also be givenPl in terms of the statistical 
moments of order q: 

<PI>'-CX^<^> (3) 

' where K(q) is the q*-moment scaling function and "<•>" stands for "ensemble average". It has also 
been shownl^e] that c(7) and K(q) are related dirough die following "Legendre Transformations": 

c(')) = max (qr- K(q)) (4a) 
1 

K(q) = max(qY-c(y)) (4b) 

which also establish a one-to-one correspondence between moments and order of singularities, since 
< '̂(7q)=^ and K'(qy)=y. Applying the Legendre transform to eq. (2) we obtain a diree-parameter 
expression: 

K(q)-qH = ^ ( q " - q ) f o r a l l (5 a) 

K(q) -qH = CiqLog(q) f o r a = l (5b) 

where q̂ O for a<2 and- -H -r = i. A direct estimate of c(7) for several values of y can be obtained 

using the Probability Distribution Multiple Scaling (PDMS) techniquel^hl. Then, given c(y), the 
parameters a, Ci and H could be estimated by regressions on eqs. (2) directly. However, since a and 
Cl are highly con'elated, non-linear regressions would lead to poor estimates of them. 

In order to obtain robust estimates of both a and Ci (H will be discussed later) we apply the 
Double Trace Moment (DTM) techniquellO], The introduction of DTMs is straightforward. Let us 

define the "tj-flux" rU of the multifractal field R- (at the maximum available resolution %) through 

boxes Bx resolution X< %: 

l i ^ \B ; J= jpldDx (6) 

where D is the dimension of the observing space. Then the DTMs can be defined as: 

^'A,(P~/ = < X l ^ l ( ^ ^ - ' ) ] '> - "̂"•'̂ •''̂ ''•'̂  (7) 
i 

where Ax is the region of interest covered by boxes Bx4 resolution X and "<•>" stands for "ensemble 
average". The introduction of a second moment order Tl is non-trivial: in factl̂ O] die (single) 
moments scaling function K(q) becomes a function K(q,r|) of both q and Tj: K(q,r\)=K(qr])-qK('q). 
Applying this to universal multifractals we obtain (exploiting eqs. (5)): 

K(q,r]) = K(q,l)T]« = K(q)r]a ^5; 

Now, since the DTMs scale as )Ĵ (i-̂ -̂-̂ ('i-̂ \ keeping q fixed and calculating the DTMs for 
different values of Tl and A, we may eventually estimate K(q,Ti) for a whole range of Tl. Taking logs 
of bodi sides of eq. (8) leads to a linear relation widi slope a, which gives a direct estimate of it; 
then, using eqs. (5), we may also calculate Ci. 

It is worth noting that, when moments of sufficientiy high order are taken, two effects will lead 
to the breakdown of eq, (8). On one hand, the finite sample size poses a limit to the maximum order 
of singularity % that can be found in the sample itself: clearly it is impossible to estimate 
codimensions of singularities that are never encountered! Introducing die sampling dimension Ds 
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(given by X '=Ns, where Ns is the number of independent realizations^ of the process) then yg can be 
found from c(Ys)=D-i-Ds. The sampling moment qs=c'(Ys) (that is, the highest order of moment that 

can be reliably estimated in a finite samplePi.lO]) is Q^ - f - ^ \ "̂  where D is the dimension of the 

observing space. On the odier hand, the very singular behaviour of a process fully developed down 
to die smallest scales and dien spatially averaged over larger-scale sets of dimension D (die "dressed 
properties") may prevent moments of sufficiisntiy high order from converging. It tums out that, 
whenever aSl , diere exists a finite order of di\'ergence qp, given by the solution QiK(qD)=D(qD-l), 
above which all of the moments diverge^. Such violent statistics is associated with "hand" behaviour. 
Taking into account both undersampling and divergence of moments a precise criterion is that eq. (8) 
breaks down whenever max(qT\,q) > min(qs,qD}-

4. Estimating H 
In cascade processes (such as those leading to multifractals) it is convenient to isolate a 

conserved quantity having a basic physical significance. In terms of scaling conservation means 
<Px>=constant (i.e. independent of A.) and hence K(1)=0. The energy spectrum of Px is of the 
scaling form k'~P, k being the frequeilcy and P the spectral slope; moreover, the exponent for 
conserved multifractal processesl^ll is ^=1-K(2). In our case we can easily estimate P: in fact we can \ 
calculate the Fourier Transform of the TCDD distribution, take its square modulus and calculate die 
(isotropic) spectmm. Finally, we need a power law filter (fractional integration) k^ to obtain the 
conserved quantity from the observed concentration, where H is calculated exploiting eqs. (5) and 
the abovc relation between P and the moments scaling function K. 

5. The Effects of the Network 
Up to now the structure of the network has played no role. Acmally, the (typically sparse) nature 

of a network may significantiy alter the inferect statistical properties of a phenomenon measured on 
it. Treating the density of stations as a multifractal measure (rather than the stations themselves as a 
fractal set) it is possible to statistically correctl-^l for such effects. Consider Nx sampling points on a 
grid resolution X; the local density of measurements can be estimated as p x ' ^ x ^ . The fundamental 
idea is to consider the measured quantities as a product measure Mx=pxPx> where M stands for 
"measured" (observed) intensity and P for "truie" intensity. In thc i''̂  grid element Bx4 thc value of 
Mx can be estimated as follows: 

Mxi-X^ lPj"X2Nx4Px.i = pX,iPx,i (9) 

where the sum is over all the pollution intensities measurements Pj in the i'^ box. Now, supposing 
statistical independence of p and P (i.e. the network density and the phenomenon are not 
"correlated"), taking the q-powcr and ensemble averaging, we obtain; 

Tr^^Ml-" X'̂ ^"-")-'̂ ''''̂ ^ (10) 

The number N; of independent realiiations of a process should not be confused with the number of measurements 
(e.g. of pollution) collecled: here Njcl and hencet"'! D,=0. 
Actually, a classificationl̂ -̂ '] of universal multifractals has only recently been provided based on the value of a: 
l£a^: we have unconditionally hard multifractals, i.e. the corresponding process will show divergence of 

moments (also called hard behaviour) above a (critical) order, since qo remains fmite for all fmite D; 
a<l: we have conditionally softlhard multifracials (for large enough bul finite values of the dimension D of the 

observing space all of the moments converi;e, i.e. qD'°«). 
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with Kiiii(q)=Kp(q)-¥Kp(q), i.e. the K's for P and p add (this is because diey are the second 
characteristic functions of Log P and Log p). This formula is easy to generalizell^l to Double Trace 
Moments by summing over PJ' in eq. (9). This yields the following DTM scaling function relations: 

Kp(q,T]) = KM(q.r]) - Kp(q,l) = KM(q.r]) - KM(q.O) (11) 

Such a formula expresses the corrected "true" Kp(q,Ti) in terms of the measured KM(q,Tl). This 
correction leads, in tum, to estimates of a and C\ not affected by the geometry of the network over 
which the phenomenon is measured. It is worth noting that such a technique can be applied using 
different values of die q-moment to improve die statistical accuracy. 

The parameter H also needs corrections. In fact, using the "*" notation to indicate conserved 
quantities, we may write: 

=x"ppy^p\=x"p'"^p:p] (12) A^^M! 
HI 

' x ~ " f^x" ^ X ~ " >^X'X 
Hence the degree of non-conservation H for the "true" process (i.e. Hp) is simply given by the 

difference Hu-Hp, which can be easily calculated using the techniques explained in the previous 
section: from Pj^ and Kiî (2) we obtain Hj^, while Hp is estimated using Pp and Kp(2). 

6. Analysis of the Results 
A preliminary corrected-DTM analysis of the TCDD distribution shows clear multifractal 

features (see table I - refinements are expected in the near futiu-e): in fact a tums out to be =1.8, 
quite different from monofractality (a=0). Given the estimated value of aSl , we may classify (see 
also foomotc 3) the actual distribution of Dioxin as an unconditioruilly hard universal multifractal 
process. This means that the process shows "hard singularities" that cannot be tamed in any way. 

The parameter Cj has value «0.6, indicating a radier sparse mean-field intensity. 
Fourier analysis allows us to estimate the parameter P for both die network and die data; then the 

corresponding values of Hp and HM are readily calculated. From the present analysis (see table 1) we 
obtain, respectively, pp=»1.2 and Hp=0.4 for the network and PM"0.1 and HM"0 .2 for the data; then 
the amount of fractional integration needed for die "true" process to become stationary is Hp'=-0.2. 

a 
»1.8 -0.6 

»1.2 
Hp 

-0.4 

1 H M 
\ »0.1 

U M 
'»0.2 

9s 
«1.9 

•'-0.2 

Table 1: Values of all the estimated Universal Multifractals parameters (see text). 

7. Conclusions and Future Perspectives 
Using universal multifractal analysis we achieved two main results. On one hand, the statistical 

characterization of the TCDD pollution is readily accomplished by means of simple procedures 
(namely, DTMs and FFTs). On die odier hand, we gain a deeper insight into the intermittent 
behavioiu" of the pollutant distribution at the smallest scdes: die wild fluctuations are not regarded as 
anomalous and discarded, on die contrary they are kept as an essential feature of the phenomenon. 
While the former conclusion has implications for generating fast computer codes, both have 
important theoretical and practical consequences in environmental sciences. We have provided a 
simple methodology to extract the full statistics from sparse measurements, preserving their intrinsic 
features such as intermittency (i.e. no "a priori" regularity or smoothness hypotheses are required as 
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in conventional objective analyses), and we have investigated the phenomenon at the highest 
available resolution. Furthermore, we stress that the estimates of the multifractal parameters a, Ci 
and H allow us to generate (stochastic) simulations of thc process. Finally, we are exploiting the 
mathematics of universal multifractals to create statistical procedures able to estimate the intensity of 
a field in the "gaps" of a (multi)fractal network. Such "multifractal objective analysis" could have 
many applications, since geophysical measurements are often collected on sparse (multi)fractal 
networloi. 

References 

[I] D.Scherizer and Siovejoy (Eds.) (1991): "Non-Lin(sar Variability in Geophysics" - Kluwer Academic Publishers. 
[2a] H.G.E.Hentschel, l.Procaccia (1983): "The Infinite Number of Generalized Dimensions of Fractals and Strange 

Auraciors", Physica, SQ, 435; 
[2b] P.Grassberger (1983): "Generalized Dimension of S trange Auractors", Phys. Lett. A, 22,227; 
[2c] D.Schertzer, SXovejoy (1983): "Elliptical Turbulence in the Atmosphere", Proc. 4 ' ' ' Symp. on Turbulent Shear 

Flows, Karlsrhule, West Gennany, 11.1; 
[2d] D.Schertzer, S.Lovejoy (1984): "On the Dimension of Atmospheric Motions", in 'Turbulence and Chaotic 

Phenomena in Fluids", Ed. Tatsumi, Elsevier North Holland, New York, p. 505; 
[2e] G.Parisi, U.Frisch (1985): "A Multifractal Model of Intermittency",in "Turbulence and Predictability in 

Geophysical Fluid Dynamics and Climate Dynamicsi". Eds. Ghil, Bemi, Parisi - N. Holland, p. 84; 
[2fi S.Lovejoy. D.Schertzer (1986): "Scale Invariarice, Symmetries, Fractals and Stochastic Simulations of 

Atmospheric Phenomena", Bulletin of AMS, fil, p. ll-, 
[2g] D.Schertzer, S.Lovejoy (1987): "Physical Modelling and Analysis of Rain and Clouds by Anisotropic Scaling 

Multiplicative Processes", J. Geophys. Res, 22 9693; 
[2h] D.Schertzer, S.Lovejoy (1989): "NonLinear Variability in Geophysics: Mulufiactal Simulations and Analysis"; in 

"Fractals: Physical Origins and Properties". Ed. L. Pietronero - Plenum Press, New York, p. 49; 
[2i] D.Schertzer et al. (1991): "Universal Hard Multifractal Turbulence: Theory and Observation" in "Non-Linear 

Dynamics of SuiKtutes". Ed. R.Z.Sagdeev, U.Frisch, S.Moiseev, N. Erokhin - World Scientific; 
[3] G.UPortunati (1986): "The Seveso Lesson: Advances in Reclamation and Disposal Techniques", in Chlorinated 

Dioxins and DIhenzofnrans in Perspective. Ed. Lewis Publishers Inc., p. 541; 
[41 S.Lovejoy et al. (1987): "Functional Box Counting and Multiple Elliptical Dimensions in Rain", Science, 22i, 

1036; 
[5] G.Salvadori, S.P.Ratd, G.Belli, S.Lovejoy, D.Schertzer, V.Vaccari (1989): "Multifractal Features of Seveso 

Ground Pollution". Subm. to DIOXIN'91 - Specijil Ipsue of Chemosphere: 
[6] K J.Falconer (1990): "Fractal Geometry", I.Wiley & Sons,; 
[7a] G.Belli, G.Bressi, E.Calligarich, S.Ceriesi, S.Ratii (1982a): Analysis of the TCDD-Distribution as a Function of 

the Underground Depth for Data Taken in 1977 and 1979 in Zone A at Seveso (ITALY). In Chlorinated Dioxin & 
Eelalfid Compounds: Impact jm Environment. Eds.l'ergamon Press, Oxford, O.Hutzinger et al., p. 137; 

[7b] G.Belli, G.Bressi, E.Calligarich, S.Ceriesi, S.Ratti (1982b): "Geometrical Distribution of TCDD on the Surface 
Layer Around Icmesa: an Analytical Description of the Main Features and the Different Approaches in the 
Different Mapping Procedures". In Chlopnatetl pioxin & Related Cnmpnimd.'i: Impact on Environment. Eds. 
Pergamon Press, Oxford, O.Hutzinger et aJ., p. 155;. 

(7c] G.Belli, S.Ceriesi, E.Milani, S.Ratti (1988): Statistical Interpolation Model for the Description of Ground 
Pollution Due to the TCDD Produced in the 1976 Chemical Accident at Seveso in the Heavely Contaminated 
Zone A. In: Toxicological and ^nvir^;)nmental Chemistry. Vol.22, p. 101; 

[7d] S.P.Ratti, G.Belli, A.Lanza, S.Ceriesi (1985): "Miithematical and Statistical Methods in modeling - The Seveso 
Dioxin Episode". In Chlorinate! Dioxins afld Dibenzofurans in Perspective, p. 467; 

[8a] G.Belli, G.Bressi, L.CarrioIi, S.Ceriesi, M.Diani, SJ'.Ratti, G.Salvadori (1989): "An attempt to provide a Fractal 
Model for the Description of the TCDD Disuibution in all the Territory around Seveso (Milan, Italy)". 
Chemosphere 20/10-12. p. 1567; 

[8b] G.Belli, S J.Ratti, G.Salvadori (1991); "An Empirical Fractal Model for the TCDD Distribution on Seveso (Milan, 
Italy) Territory"; Toxicolofical and Envin^nmental Chemistry 32, p. 201; 

[9] Wteller (1971): "An Introduction to Probability Tlieory and its Applications", Vol. II, Wiley & S.; 
[10] D.Lavallie et ai.(1991): "Turbulence and Universal Multifractals II: A New Method for Determining Multifractal 

Indices: Double Trace Moment" (subm. to C. R. Acad, des Sciences, Paris); 
[II] A.S.Monin, A.M.Yaglom (197S), Stat. Fluid Mech, 2, MIT Press, Boston; 
[12] Y.Tessier et al. (1992): "Universal Multifractals In Rain and Clouds: Theory and Observations"; acc. on J. Appl. 

Meteorology. 

226 Organohalogen Compounds (1992) Volume 9




