α-NAPHTHOFLAVONE AND 1-AMINO-3,7,8-TRICHLORODIBENZO-p-DIOXIN AS 2,3,7,8-TCDD ANTAGONISTS IN RAT HEPATOMA H-4-II E CELLS

M. Merchant, L. Arellano and S. Safe

Department of Veterinary Physiology and Pharmacology

College of Veterinary Medicine, Texas A&M University

College Station, Texas 77843

ABSTRACI

Treatment of rat hepatoma H-4-II E cells with 10^{-9} M TCDD caused 90-100% of the maximum induction of ethoxyresorufin O-deethylase (EROD) activity. In contrast, at concentrations of 10^{-6} M, α -naphthoflavone (α -NF) and 1-amino-3,7,8-trichlorodibenzo-p-dioxin (NH₂-TrCDD) were inactive as inducers. Cotreatment of the cells with 10^{-9} M TCDD plus 10^{-8} - 10^{-6} M α -NF or 10^{-8} - 10^{-6} M NH₂-TrCDD resulted in a concentration-dependent decrease in the induction of EROD activity by TCDD; for example, 10^{-6} M concentrations of both antagonists causes a 66 and 45% decrease respectively in TCDD-induced EROD activities. α -NF (10^{-6} M) also caused a decrease in the formation of nuclear [³H]-TCDD-receptor complexes and a reduction in P4501A1 mRNA levels (84 and 75% respectively). In contrast NH₂-TrCDD (10^{-6} M) caused only a 25% reduction in nuclear [³H]-TCDD Ah receptor levels and a 19% decrease in P-4501A1 mRNA levels compared to cells treated with 10^{-9} M TCDD alone.

INTRODUCTION

Recent studies in this laboratory have shown that α -NF inhibited the induction of aryl hydrocarbon hydroxylase, EROD and P-4501A1 mRNA levels by TCDD in rat hepatoma H-4-II E cells (1). It was also shown the α -NF inhibited the accumulation of nuclear [³H]-TCDD-receptor complexes. Double reciprocal plot analysis of the binding of [³H]-TCDD with rat hepatic cytosol and different concentrations of α -NF gave results which suggested the α -NF acted as a competitive Ah receptor antagonist. It has previously been reported that NH₂-TrCDD also inhibited TCDD-induced responses (2) and this study will compare the antagonist activities of both α -NF and NH₂-TrCDD in rat hepatoma H-4-II E cells.

1990

MATERIALS AND METHODS

Nuclear Extractions

H-4-II E cells were grown in α -MEM medium and treated with [³H]-TCDD, α -NF, NH₂-TriCDD, [³H]-TCDD + α -NF, [³H]-TCDD + NH₂-TriCDD or DMSO (control). Cells were harvested one hour after treatment, centrifuged at 1000xg for 5 min (2°C), and resuspended in HEGD buffer. Nuclear extracts were prepared as described (3). Nuclear extracts were incubated with dextran-treated charcoal and then loaded onto linear sucrose gradients (5-25%). The gradients were centrifuged for 2.5 hours in a vertical tube rotor and then fractionated. [³H]-TCDD in each fraction was determined by liquid scintillation counting. Baselines were obtained by coadministering a 200-fold excess of unlabelled TCDF.

mRNA Isolation

H-4-II E cells were grown in α -MEM medium and treated with TCDD, α -NF, NH₂-TriCDD, TCDD + α -NF, TCDD + NH₂-TriCDD, or DMSO (control). Cells were harvested 18 h after treatment by manual scraping from the plate, centrifuged at 1000xg for 5 min (2°C), and resuspended in phosphate buffered saline. Cells were lysed by the addition of guanidinium hydrochloride and the RNA isolated by phenol-chloroform extraction. DNA contamination was removed by selective precipitation of RNA with LiCl. Samples were then electrophoresed through an 0.8% agarose denaturing gel and transferred to a nylon membrane. The membrane was blocked and then probed with an 0.9 kb P-4501A1 cDNA fragment. Quantitation of bands was performed on a Betagen Betascope 603 Blot Analyzer. The P-4501A1 mRNA signal was standardized against a β -tubulin signal (1).

Enzyme Assays

H-4-IJ E cells were grown in α -MEM medium and treated with TCDD, α -NF, NH₂-TriCDD, TCDD + α -NF, TCDD + NH₂-TriCDD, or DMSO (control). Cells were harvested 24 h after treatment by manual scraping from the plate, centrifuged at 1000xg for 5 min (2° C) and resuspended in Tris-sucrose. Aliquots of the cell suspension were assayed for EROD activity by the method Pohl and Fouts (4).

RESULTS AND DISCUSSION

Table 1 summarizes the interactive effects of TCDD with α -NF and NH₂-TrCDD as inducers of EROD activities and both compounds exhibit a concentration-dependent

Table 1. •-NF and NH₂-TrCDD as TCDD Antagonists in Rat Hepatoma H-4-II E Cells.

Treatment	<u>% Decrease in EROD</u> <u>Activity</u> *
10^{-9} M TCDD + 10^{-8} M α -NF	44.7
10^{-9} M TCDD + 10^{-7} M α -NF	51.0
10^{-9} M TCDD + 10^{-6} M α -NF	66.2
10^{-9} M TCDD + 10^{-8} M NH ₂ -TrCDD	24.2
10^{-9} M TCDD + 10^{-7} M NH ₂ -TrCDD	38.9
10^{-9} M TCDD + 10^{-6} M NH ₂ -TrCDD	44.9

compared to cell treated with 10^{-9} M TCDD alone; all the decreases were significant (p < 0.01).

antagonist effect on the induction response. In contrast, the results in Table 2 illustrate the α -NF causes a parallel concentration-dependent decrease in TCDD-induced P-4501A1 mRNA levels whereas at the highest dose of NH₂-TrCDD, only an 18.6% decrease in P-4501A1 mRNA levels were observed. The effects of α -NF and NH₂-TrCDD on nuclear

	mRNA Levels in H-4-II É Ce	ells
Treatment		<u>% Decrease in</u> P-4501A1 mRNA*
10 ^{.9} M TCD	$D + 10^{-8} M \alpha - NF D + 10^{-7} M \alpha - NF D + 10^{-6} M \alpha - NF$	26.8 48.8 74.9
10 ⁻⁹ M TCD	D + 10^{-6} M NH ₂ -TrCDD	18.6

Effects of a-NF and NH--TrCDD on TCDD-Induced P-4501A1

*compared to cells treated with ⁻⁹ M TCDD alone; all the decreases were significant (p <

[³H]-TCDD-receptor complexes were also compared (Table 3). As previously reported (1), α -NF caused a concentration-dependent decrease in nuclear [³H]-TCDD-receptor levels whereas NH₂-TrCDD cause a maximum 25.54% reduction in these levels at the highest concentration (10⁻⁶ M). These results were similar to those previously reported for 6methyl 1,3,8-trichlorodibenzofuran (3,5) and the data suggest that NH₂-TrCDD and MCDF may act as TCDD antagonists through a mechanism which is different from α -NF.

Table 3. Effects of a-NF and NH₂-TrCDD on the Accumulation of Nuclear [³H]-TCDD-Ah Receptor Complexes in H-4-II E Cells.

Treatment	<u>% Reduction in</u> Nuclear Receptor Levels*
10^{-9} M TCDD + 10^{-8} M α-NF 10^{-9} M TCDD + 10^{-7} M α-NF 10^{-9} M TCDD + 10^{-6} M α-NF	39.6 82.2 84.3
10 ⁻⁹ M TCDD + 10 ⁻⁶ M NH ₂ -TrCDD	25.4

^acompared to cells treated with [³H]-TCDD alone; all the decreases were significant (p < 0.01).

Table 2.

0.01).

ACKNOWLEDGEMENTS

The financial assistance of the National Institutes of Health (ESO3843) and the Texas Agricultural Experiment Station are gratefully acknowledged. S. Safe is a Burroughs Wellcome Toxicology Scholar.

REFERENCES

- 1. Merchant M., Arellano L. and Safe S. (1990) Arch. Biochem. Biophys., in press.
- Luster M.I., Hong L.I., Osborne R., Blank J.A., Clark G., Silver M.T., Boorman G.A. and Greenlee W.F. (1986) <u>Biochem. Biophys. Res. Commun.</u> 139, 747.
- 3. Harris M., Zacharewski T., Astroff A. and Safe S. (1989) Mol. Pharmacol. 35, 729.
- 4. Pohl R.J. and Fouts J.R. (1980) Anal. Biochem. 107, 150.
- Astroff B., Zacharewski T., Safe S., Arlotto M.P., Parkinson A., Thomas P. and Levin W. (1988) <u>Mol. Pharmacol.</u> 33, 231.